Skip to main content
Log in

Comparative Study of Withanolide Biosynthesis-Related miRNAs in Root and Leaf Tissues of Withania somnifera

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Withania somnifera, popularly known as Indian ginseng, is one of the most important medicinal plants. The plant is well studied in terms of its pharmaceutical activities and genes involved in biosynthetic pathways. However, not much is known about the regulatory mechanism of genes responsible for the production of secondary metabolites. The idea was to identify miRNA transcriptome responsible for the regulation of withanolide biosynthesis, specifically of root and leaf tissues individually. The transcriptome data of in vitro culture of root and leaf tissues of the plant was considered for miRNA identification. A total of 24 and 39 miRNA families were identified in root and leaf tissues, respectively. Out of these, 15 and 27 miRNA families have shown their involvement in different biological functions in root and leaf tissues, respectively. We report here, specific miRNAs and their corresponding target genes for corresponding root and leaf tissues. The target genes have also been analyzed for their role in withanolide metabolism. Endogenous root-miR5140, root-miR159, leaf-miR477, and leaf-miR530 were reported for regulation of withanolide biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kaileh, M., VandenBerghe, W., Boone, E., Essawi, T., & Haegeman, G. (2007). Screening of indigenous Palestinian medicinal plants for potential anti-inflammatory and cytotoxic activity. Journal of Ethnopharmacology, 113, 510–516.

    Article  PubMed  Google Scholar 

  2. Mirjalili, M. H., Moyano, E., Bonfill, M., Cusido, R. M., & Palazon, J. (2009). Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules, 14(7), 2373–2393. https://doi.org/10.3390/molecules14072373

    Article  CAS  PubMed  Google Scholar 

  3. Siriwardane, A. S., Dharmadasa, R. M., & Samarasinghe, K. (2013). Distribution of withaferin A, an anticancer potential agent, in different parts of two varieties of Withania somnifera (L.) Dunal. grown in Sri Lanka. Pak J BiolSci, 16, 141–144.

    Article  CAS  Google Scholar 

  4. Verma, S. K., & Kumar, A. (2011). Therapeutic uses of Withania somnifera (ashwagandha) with a note on withanolides and its pharmacological actions. Asian Journal of Pharmaceutical and Clinical Research, 4, 1–4.

    CAS  Google Scholar 

  5. Sangwan, R. S., Chaurasiya, N. D., Sangwan, P. L., Misra, L. N., Tuli, R., & Sangwan, N. S. (2008). Withanolide A is inherently de novo biosynthesized in roots of the medicinal plant Ashwagandha (Withania somnifera). Plant Physiology, 133(2), 278–287. https://doi.org/10.1111/j.1399-3054.2008.01076.x

    Article  CAS  Google Scholar 

  6. Pal, S., Singh, S., Ashutosh, K. S., Madan, M. G., Suman, P. S. K., & Ajit, K. S. (2011). Comparative withanolide profiles, gene isolation, and differential gene expression in the leaves and roots of Withania somnifera. The Journal of Horticultural Science and Biotechnology, 86(4), 391–397. https://doi.org/10.1080/14620316.2011.11512779

    Article  CAS  Google Scholar 

  7. Da Silva, A. C., Grativol, C., Thiebaut, F., Hemerly, A. S., & Ferreira, P. C. G. (2016). Computational identification and comparative analysis of miRNA precursors in three palm species. Planta, 243(5), 1265–1277. https://doi.org/10.1007/s00425-016-2486-6

    Article  CAS  PubMed  Google Scholar 

  8. Yang, T., Xue, L., & An, L. (2007). Functional diversity of miRNA in plants. Plant Science, 172(3), 423–432. https://doi.org/10.1016/j.plantsci.2006.10.009

    Article  CAS  Google Scholar 

  9. Srivastava, S., Singh, N., Srivastava, G., & Sharma, A. (2017). miRNA mediated gene regulatory network analysis of Cichoriumintybus (chicory). Agri Gene, 3, 37–45. https://doi.org/10.1016/j.aggene.2016.11.003

    Article  Google Scholar 

  10. Mallory, A. C., & Vaucheret, H. (2006). Functions of microRNAs and related small RNAs in plants. Nature Genetics, 38(Suppl), S31–S36. https://doi.org/10.1038/ng1791

    Article  CAS  PubMed  Google Scholar 

  11. Wang, J.-W., Wang, L.-J., Mao, Y.-B., Cai, W.-J., Xue, H.-W., & Chen, X.-Y. (2005). Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell, 17(8), 2204–2216. https://doi.org/10.1105/tpc.105.033076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jones-Rhoades, M. W., & Bartel, D. P. (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 14(6), 787–799. https://doi.org/10.1016/j.molcel.2004.05.027

    Article  CAS  PubMed  Google Scholar 

  13. Chen, X. (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303(5666), 2022–2025. https://doi.org/10.1126/science.1088060

    Article  CAS  PubMed  Google Scholar 

  14. Palatnik, J. F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J. C., & Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature, 425(6955), 257–263. https://doi.org/10.1038/nature01958

    Article  CAS  PubMed  Google Scholar 

  15. Boke, H., Ozhuner, E., Turktas, M., Parmaksiz, I., Ozcan, S., & Unver, T. (2015). Regulation of the alkaloid biosynthesis by miRNA in opium poppy. Plant Biotechnology Journal, 13(3), 409–420. https://doi.org/10.1111/pbi.12346

    Article  CAS  PubMed  Google Scholar 

  16. Senthil, K., Jayakodi, M., Thirugnanasambantham, P., Lee, S. C., Duraisamy, P., Purushotham, P. M., Rajasekaran, K., Charles, S. N., Roy, I. M., Nagappan, A. K., Kim, G. S., Lee, Y. S., Natesan, S., Min, T. S., & Yang, T. J. (2015). Transcriptome analysis reveals in vitro cultured Withania somnifera leaf and root tissues as a promising source for targeted withanolide biosynthesis. BMC Genomics, 16, 1–16.

    Article  CAS  Google Scholar 

  17. Patel, R. K., & Jain, M. (2012). NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One, 7(2), e30619. https://doi.org/10.1371/journal.pone.0030619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kozomara, A., & Griffiths-Jones, S. (2014). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42(D1), D68–D73. https://doi.org/10.1093/nar/gkt1181

    Article  CAS  PubMed  Google Scholar 

  19. Numnark, S., Mhuantong, W., Ingsriswang, S., & Wichadakul, D. (2012). C-mii: a tool for plant miRNA and target identification. BMC Genomics, 13(Suppl 7), S16. https://doi.org/10.1186/1471-2164-13-S7-S16

    Article  PubMed  PubMed Central  Google Scholar 

  20. Conesa, A., Gotz, S., García-Gómez, J.M., Terol, J., Talón, M. & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674–3676

    Article  CAS  PubMed  Google Scholar 

  21. Botton, A., Galla, G., Conesa, A., Bachem, C., Ramina, A. & Barcaccia, G. (2008). Large-scale Gene Ontology analysis of plant transcriptome-derived sequences retrieved by AFLP technology. BMC Genomics, 9(1), 347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Galla, G., Barcaccia, G., Ramina, A., Collani, S., Alagna, F., Baldoni, L., Cultrera, N.G., Martinelli, F., Sebastiani, L. & Tonutti, P., (2009). Computational annotation of genes differentially expressed along olive fruit development. BMC Plant Biology, 9(1), 128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C., & Kanehisa, M. (2007). KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research, 35(Web Server), W182–W185. https://doi.org/10.1093/nar/gkm321

    Article  PubMed  PubMed Central  Google Scholar 

  25. Singh, R., Pandey, N., Naskar, J., & Shirke, P. A. (2015). Physiological performance and differential expression profiling of genes associated with drought tolerance in contrasting varieties of two Gossypium species. Protoplasma, 252(2), 423–438. https://doi.org/10.1007/s00709-014-0686-0

    Article  CAS  PubMed  Google Scholar 

  26. Singh, P., Guleri, R., Angurala, A., Kaur, K., Kaur, K., Kaul, S. C., Wadhwa, R., & Pati, P. K. (2017). Addressing challenges to enhance the bioactives of Withania somnifera through organ, tissue, and cell culture based approaches. BioMed Research International, 2017, 1–15. https://doi.org/10.1155/2017/3278494

    Article  CAS  Google Scholar 

  27. Dhar N, Razdan S, Rana S, Bhat WW, Vishwakarma R, Lattoo SK (2015) A decade of molecular understanding of withanolide biosynthesis and in vitro studies in Withania somnifera (L.) Dunal: prospects and perspectives for pathway engineering. Frontiers in Plant Science 6. doi:https://doi.org/10.3389/fpls.2015.01031.

  28. Pal, S., Yadav, A. K., Singh, A. K., Rastogi, S., Gupta, M. M., Verma, R. K., Nagegowda, D. A., Pal, A., & Shasany, A. K. (2017). Nitrogen treatment enhances sterols and withaferin A through transcriptional activation of jasmonate pathway, WRKY transcription factors, and biosynthesis genes in Withania somnifera (L.) Dunal. Protoplasma, 254(1), 389–399. https://doi.org/10.1007/s00709-016-0959-x

    Article  CAS  PubMed  Google Scholar 

  29. Davis, L., & Kuttan, G. (2000). Immunomodulatory activity of Withania somnifera. Journal of Ethnopharmacology, 71(1-2), 193–200. https://doi.org/10.1016/S0378-8741(99)00206-8

    Article  CAS  PubMed  Google Scholar 

  30. Khanna, D., Sethi, G., Ahn, K. S., et al. (2007). Natural products as a gold mine for arthritis treatment. CurrOpinPharmacol, 7, 344–351.

    CAS  Google Scholar 

  31. Ku, S. K., & Bae, J. S. (2014). Antiplatelet, anticoagulant, and profibrinolytic activities of withaferin A. VascPharmacol, 60, 120–126.

    CAS  Google Scholar 

  32. Datta, A., Bagchi, C., & Tripathi, S. K. (2013). Antidiabetic and antihyperlipidemic activity of hydroalcoholic extract of Withania coagulans Dunal dried fruit in experimental rat models. J Ayurveda Integr Med, 4, 99–106.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Choudhary, S., Kumar, P., & Malik, J. (2013). Plants and phytochemicals for Huntington’s disease. Pharmacognosy Reviews, 7(14), 81–91. https://doi.org/10.4103/0973-7847.120505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pingali, U., Pilli, R., & Fatima, N. (2014). Effect of standardized aqueous extract of Withania somnifera on tests of cognitive and psychomotor performance in healthy human participants. Pharmacogn Res, 6(1), 12–18. https://doi.org/10.4103/0974-8490.122912

    Article  Google Scholar 

  35. Rai, M., Jogee, P. S., Agarkar, G., & dos Santos, C. A. (2016). Anticancer activities of Withania somnifera: current research, formulations, and future perspectives. Pharmaceutical Biology, 54(2), 189–197. https://doi.org/10.3109/13880209.2015.1027778

    Article  CAS  PubMed  Google Scholar 

  36. Griffiths, J. S., Saini, H. K., Van, D. S., & Enright, A. J. (2008). miRBase: tools for microRNA genomics, Nucleic Acids Res., 36, D154eD158.

  37. Xu, Y., Chu, L., Jin, Q., Wang, Y., Chen, X., Zhao, H., & Xue, Z. (2015). Transcriptome-wide identification of miRNAs and their targets from Typhaangustifolia by RNA-Seq and their response to cadmium stress. PLoS One, 10(4), e0125462. https://doi.org/10.1371/journal.pone.0125462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saifi, M., Nasrullah, N., Ahmad, M. M., Ali, A., Khan, J. A., & Abdin, M. Z. (2015). In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana. Plant Physiology and Biochemistry, 94, 57–64. https://doi.org/10.1016/j.plaphy.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  39. Koul, A., Yogindran, S., Sharma, D., Kaul, S., Rajam, M. V., & Dhar, M. K. (2016). Carotenoid profiling, in silico analysis and transcript profiling of miRNAs targeting carotenoid biosynthetic pathway genes in different developmental tissues of tomato. Plant Physiology and Biochemistry, 108, 412–421. https://doi.org/10.1016/j.plaphy.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  40. Sharma, D., Tiwari, M., Pandey, A., Bhatia, C., Sharma, A., & Trivedi, P. K. (2016). MicroRNA858 is a potential regulator of phenylpropanoid pathway and plant development in Arabidopsis. Plant Physiology, pp.01831.2015. https://doi.org/10.1104/pp.15.01831

  41. Gupta, O. P., Karkute, S. G., Banerjee, S., Meena, N. L., & Dahuja, A. (2017). Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.00374

  42. Bologna, N. G., Mateos, J. L., Bresso, E. G., & Palatnik, J. F. (2009). A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. The EMBO Journal, 28(23), 3646–3656. https://doi.org/10.1038/emboj.2009.292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bologna, N. G., Schapire, A. L., Zhai, J., Chorostecki, U., Boisbouvier, J., Meyers, B. C., & Palatnik, J. F. (2013). Multiple RNA recognition patterns during microRNA biogenesis in plants. Genome Research, 23(10), 1675–1689. https://doi.org/10.1101/gr.153387.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Das, A., Das, P., Kalita, M. C., & Mondal, T. K. (2016). Computational identification, target prediction, and validation of conserved miRNAs in insulin plant (Costuspictus D. Don). Applied Biochemistry and Biotechnology, 178(3), 513–526. https://doi.org/10.1007/s12010-015-1891-9

    Article  CAS  PubMed  Google Scholar 

  45. Xu, S., Jiang, Y., Wang, N., Xia, B., Jiang, Y., Li, X., Zhang, Z., Li, Y., & Wang, R. (2016). Identification and differential regulation of microRNAs in response to methyl jasmonatetreatment in Lycorisaurea by deep sequencing. BMC Genomics, 17(1), 789. https://doi.org/10.1186/s12864-016-2645-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu, W., Cui, Q., Li, F., & Liu, A. (2013). Transcriptome-wide identification and characterization of microRNAs from castor bean (Ricinuscommunis L.) PLoS One, 8(7), e69995. https://doi.org/10.1371/journal.pone.0069995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, B. H., Pan, X. P., Cox, S. B., Cobb, G. P., & Anderson, T. A. (2006). Evidence that miRNAs are different from other RNAs. Cellular and Molecular Life Sciences CMLS, 63(2), 246–254. https://doi.org/10.1007/s00018-005-5467-7

    Article  CAS  PubMed  Google Scholar 

  48. Yang, Y., Chen, X., Chen, J., Xu, H., Li, J., & Zhang, Z. (2011). Differential miRNA expression in Rehmanniaglutinosa plants subjected to continuous cropping. BMC Plant Biology, 11(1), 53. https://doi.org/10.1186/1471-2229-11-53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kaur, P., Shukla, N., Joshi, G., VijayaKumar, C., Jagannath, A., Agarwal, M., Goel, S., & Kumar, A. (2017). Genome-wide identification and characterization of miRNAome from tomato (Solanum lycopersicum) roots and root-knot nematode (Meloidogyne incognita) during susceptible interaction. PLoS One, 12(4), e0175178. https://doi.org/10.1371/journal.pone.0175178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu, Y.-B., Qi, Y.-P., Yang, L.-T., Guo, P., Li, Y., & Chen, L.-S. (2015). Boron-deficiency-responsive microRNAs and their targets in Citrus sinensis leaves. BMC Plant Biology, 15(1). https://doi.org/10.1186/s12870-015-0642-y

  51. Dutt, S., Manjul, A. S., Raigond, P., Singh, B., Siddappa, S., Bhardwaj, V., Kawar, P. G., Patil, V. U., & Kardile, H. B. (2017). Key players associated with tuberization in potato: potential candidates for genetic engineering. Critical Reviews in Biotechnology, 1–19(7), 942–957. https://doi.org/10.1080/07388551.2016.1274876

    Article  CAS  Google Scholar 

  52. Miozzi, L., Napoli, C., Sardo, L., & Accotto, G. P. (2014). Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection. PLoS One, 9(2), e89951. https://doi.org/10.1371/journal.pone.0089951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Khaldun, A. B. M., Huang, W., Liao, S., Lv, H., & Wang, Y. (2015). Identification of MicroRNAs and target genes in the fruit and shoot tip of Lyciumchinense: a traditional Chinese medicinal plant. PLoS One, 10(1), e0116334. https://doi.org/10.1371/journal.pone.0116334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gao, C., Wang, P., Zhao, S., Zhao, C., Xia, H., Hou, L., Ju, Z., Zhang, Y., Li, C., & Wang, X. (2017). Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development. BMC Genomics, 18(1), 220. https://doi.org/10.1186/s12864-017-3587-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Song, C., Yu, M., Han, J., Wang, C., Liu, H., Zhang, Y., & Fang, J. (2012). Validation and characterization of Citrus sinensis microRNAs and their target genes. BMC Research Notes, 5(1), 235. https://doi.org/10.1186/1756-0500-5-235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Omidvar, V., Mohorianu, I., Dalmay, T., & Fellner, M. (2015). Identification of miRNAs with potential roles in regulation of anther development and male-sterility in 7B-1 male-sterile tomato mutant. BMC Genomics, 16(1). https://doi.org/10.1186/s12864-015-2077-0

  57. Liang, G., Li, Y., He, H., Wang, F., & Yu, D. (2013). Identification of miRNAs and miRNA-mediated regulatory pathways in Carica papaya. Planta, 238(4), 739–752. https://doi.org/10.1007/s00425-013-1929-6

    Article  CAS  PubMed  Google Scholar 

  58. Mangrauthia, S. K., Bhogireddy, S., Agarwal, S., Prasanth, V. V., Voleti, S. R., Neelamraju, S., & Subrahmanyam, D. (2017). Genome-wide changes in microRNA expression during short and prolonged heat stress and recovery in contrasting rice cultivars. Journal of Experimental Botany, 68(9), 2399–2412. https://doi.org/10.1093/jxb/erx111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Campbell, J. A., Davies, G. J., Bulone, V., & Henrissat, B. (1997). A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. The Biochemical Journal, 326(3), 929–939. https://doi.org/10.1042/bj3260929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jones, P., & Vogt, T. (2001). Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta, 213(2), 164–174. https://doi.org/10.1007/s004250000492

    Article  CAS  PubMed  Google Scholar 

  61. Bhat, W. W., Lattoo, S. K., Razdan, S., Dhar, N., Rana, S., Dhar, R. S., Khan, S., & Vishwakarma, R. A. (2012). Molecular cloning, bacterial expression and promoter analysis of squalene synthase from Withania somnifera (L.) Dunal. Gene, 499(1), 25–36. https://doi.org/10.1016/j.gene.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  62. Chen, X., Dai, G., Ren, Z., Tong, Y., Yang, F., & Zhu, Y. (2016). Identification of dietetically absorbed rapeseed (Brassica campestris L.) bee pollen microRNAs in serum of mice. BioMed Research International, 2016, 1–5. https://doi.org/10.1155/2016/5413849

    Article  CAS  Google Scholar 

  63. Chin, A. R., Fong, M. Y., Somlo, G., Wu, J., Swiderski, P., Wu, X., & Wang, S. E. (2016). Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Research, 26(2), 217–228. https://doi.org/10.1038/cr.2016.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liang, G., Zhu, Y., Sun, B., Shao, Y., Jing, A., Wang, J., & Xiao, Z. (2014). Assessing the survival of exogenous plant microRNA in mice. Food Science & Nutrition, 2(4), 380–388. https://doi.org/10.1002/fsn3.113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank SRA database of NCBI database for making it freely available to the scientific community. Financial assistance to SS under BTISnet programme of DBT-New Delhi, S and RS under SERB-PDF and GS under ICMR-SRF is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Sharma.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Sanchita, Singh, R. et al. Comparative Study of Withanolide Biosynthesis-Related miRNAs in Root and Leaf Tissues of Withania somnifera. Appl Biochem Biotechnol 185, 1145–1159 (2018). https://doi.org/10.1007/s12010-018-2702-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2702-x

Keywords

Navigation