Skip to main content

Advertisement

Log in

Molecular insights into sensing, regulation and improving of heat tolerance in plants

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Climate-change-mediated increase in temperature extremes has become a threat to plant productivity. Heat stress-induced changes in growth pattern, sensitivity to pests, plant phonologies, flowering, shrinkage of maturity period, grain filling, and increased senescence result in significant yield losses. Heat stress triggers multitude of cellular, physiological and molecular responses in plants beginning from the early sensing followed by signal transduction, osmolyte synthesis, antioxidant defense, and heat stress-associated gene expression. Several genes and metabolites involved in heat perception and in the adaptation response have been isolated and characterized in plants. Heat stress responses are also regulated by the heat stress transcription factors (HSFs), miRNAs and transcriptional factors which together form another layer of regulatory circuit. With the availability of functionally validated candidate genes, transgenic approaches have been applied for developing heat-tolerant transgenic maize, tobacco and sweet potato. In this review, we present an account of molecular mechanisms of heat tolerance and discuss the current developments in genetic manipulation for heat tolerant crops for future sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  • Abdelrahman M, Ishii T, El-Sayed M, Tran LSP (2020) Heat sensing and lipid reprograming as a signaling switch for heat stress responses in wheat. Plant Cell Physiol 61(8):1399–1407

    Article  CAS  PubMed  Google Scholar 

  • Agarwal P, Baranwal VK, Khurana P (2019) Genome-wide analysis of bZIP transcription factors in wheat and functional characterization of a TabZIP under abiotic stress. Sci Rep 9(1):4608

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahsan N, Donnart T, Nouri MZ, Komatsu S (2010) Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. J Proteome Res. 9(8):4189–204. https://doi.org/10.1021/pr100504j (PMID: 20540562)

    Article  CAS  PubMed  Google Scholar 

  • Asseng et al (2014) Rising temperatures reduce global wheat production. Nat Clim Change 5(2):143–147

    Article  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2013) ROS as key players in plant stress signaling. J Exp Bot. 65(5):1229–40

    Article  PubMed  Google Scholar 

  • Bielach A, Hrtyan M, Tognetti BV (2017) Plants under stress: involvement of auxin and cytokinin. Int J Mol Sci 18(7):1427

    Article  PubMed Central  Google Scholar 

  • Bigeard J, Hirt H (2018) Nuclear signaling of plant MAPKs. Front Plant Sci 9:469. https://doi.org/10.3389/fpls.2018.00469

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonawitz ND, Ainley WM, Itaya A et al (2018) Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining. Plant Biotechnol J 17(4):750–761

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandner CSJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129:1773–1780

    Article  Google Scholar 

  • Cai X, Odongo R, Yanchao M et al (2019) Comparative transcriptome, physiological and biochemical analyses reveal response mechanism mediated by CBF4 and ICE2 in enhancing cold stress tolerance in Gossypium thurber. AoB Plants 11(6):plz045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casaretto JA, El-Kereamy A, Zeng B, Stiegelmeyer SM, Chen X, Bi YM, Rothstein SJ (2016) Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genomics 17:312

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C, Kevin B, Liu K et al (2016) Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity. Plant Physiol 171(1):606–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chourey PS, Jain M, Li QB, Carlson SJ (2006) Genetic control of cell wall invertases in developing endosperm of maize. Planta 223:159–167. https://doi.org/10.1007/s00425-005-0039-5

    Article  CAS  PubMed  Google Scholar 

  • Cifuentes-Esquivel N, Celiz-Balboa J, Henriquez-Valencia C, Mitina I, Arraño-Salinas P, Moreno AA, Meneses C, Blanco-Herrera F, Orellana A (2018) bZIP17 regulates the expression of genes related to seed storage and germination, reducing seed susceptibility to osmotic stress. J Cell Biochem. 119(8):6857–6868

    Article  CAS  PubMed  Google Scholar 

  • Clarke SM, Cristescu SM, Miersch O, Harren FJM, Wasternack C, Mur LAJ (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182:175–187

    Article  CAS  PubMed  Google Scholar 

  • Curtin SJ, Anderson JE, Mani D, Voytas DF, Stupar RM (2013) Targeted mutagenesis for functional analysis of gene duplication in legumes. Methods Mol Bio 1069:25–42

    Article  CAS  Google Scholar 

  • Das P, Lakra N, Nutan KK (2019) A unique bZIP transcription factor imparting multiple stress tolerance in Rice. Rice (N Y) 12(1):58

    Article  Google Scholar 

  • De Ronde JAD, Cress WA, Kruger GHJ, Strasser RJ, Staden JV (2004) Photosynthetic response of transgenic soybean plants containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 61:1211–1244. https://doi.org/10.1016/j.jplph.2004.01.014

    Article  CAS  Google Scholar 

  • Debbarma J, Sarki YN, Saikia B et al (2019) Ethylene response factor (ERF) family proteins in abiotic stresses and CRISPR-Cas9 genome editing of ERFs for multiple abiotic stress tolerance in crop plants: a review. Mol Biotechnol 61(2):153–172

    Article  CAS  PubMed  Google Scholar 

  • Deeba F, Sultana T, Javaid B, Mahmood T, Naqvi SMS (2017) Molecular characterization of a MYB protein from Oryza sativa for its role in abiotic stress tolerance. Braz Arch Biol Tech 10:1590

    Google Scholar 

  • Ding Y, Huang L, Jiang Q, Zhu C (2020) MicroRNAs as important regulators of heat stress responses in plants. J Agric Food Chem 68(41):11320–11326

    Article  CAS  PubMed  Google Scholar 

  • Donato M, Geisler M (2019) HSP90 and co-chaperones: a multitaskers’ view on plant hormone biology. FEBS Lett. 593:1415–1430. https://doi.org/10.1002/1873-3468.13499

    Article  CAS  PubMed  Google Scholar 

  • Du X, Li W, Sheng L et al (2018) Over-expression of chrysanthemum CmDREB6 enhanced tolerance of chrysanthemum to heat stress. BMC Plant Biol 18:178. https://doi.org/10.1186/s12870-018-1400-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evrard A, Kumar M, Lecourieux D et al (2013) Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2. PeerJ 1:e59

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U et al (2017) Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 8:1147. https://doi.org/10.3389/fpls.2017.01147

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson JN, Tidy AC, Murchie EH, Wilson ZA (2021) The potential of resilient carbon dynamics for stabilizing crop reproductive development and productivity during heat stress. Plant Cell Environ 44:2066–2089

    Article  CAS  PubMed  Google Scholar 

  • Finka A, Goloubinoff P (2014) The CNGCb and CNGCd genes from Physcomitrella patens moss encode for thermosensory calcium channels responding to fluidity changes in the plasma membrane. Cell Stress Chaperones. 19(1):83–90. https://doi.org/10.1007/s12192-013-0436-9

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Li T, Liu Y et al (2010) Isolation and characterization of gene encoding G protein subunit protein responsive to plant hormones and abiotic stresses in Brassica napus. Mol Biol Rep 37:3957–3965

    Article  CAS  PubMed  Google Scholar 

  • Giacomelli JI, Weigel D, Chan RL, Manavella PA (2012) Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytol 195:766

    Article  CAS  PubMed  Google Scholar 

  • Goraya GK, Kaur B, Asthir B et al (2017) Rapid injuries of high temperature in plants. J Plant Biol 60:298–305

    Article  CAS  Google Scholar 

  • Guan QM, Lu XY, Zeng HT, Zhang YY, Zhu JH (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermo-tolerance in Arabidopsis. Plant J 74(5):840–851

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Liu HJ, Ma X, Zhen HG, Lu MH (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7:114. https://doi.org/10.3389/fpls.2016.00114

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra R, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 1:377–384

    Article  Google Scholar 

  • Haq S, Khan A, Ali M et al (2019) Heat Shock Proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. Int J Mol Sci 20(21):5321

    Article  Google Scholar 

  • Hasan MA, Ahmed JU (2005) Kernel growth physiology of wheat under late planting heat stress. J Natn Sci Foundation Sri Lanka 33(3):193–204

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain MS et al (2017) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18(1):200

    Article  PubMed Central  Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe DW (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370

    Article  Google Scholar 

  • Haydari M, Maresca V, Rigano D et al (2019) Salicylic acid and melatonin alleviate the effects of heat stress on essential oil composition and antioxidant enzyme activity in Mentha × piperita and Mentha arvensis L. Antioxidants (Basel). 8(11):547

    Article  CAS  PubMed Central  Google Scholar 

  • He M, He CQ, Ding NZ (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1771

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu W, Wang L, Tie W et al (2016) Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana. Sci Rep 6:30203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutsch BW, Jahn D, Schubert S (2019) Grain yield of wheat (Triticum aestivum L.) under long-term heat stress is sink-limited with stronger inhibition of kernel setting than grain filling. J Agro Crop Sci. https://doi.org/10.1111/jac.12298

    Article  Google Scholar 

  • Ibáñez H, Ballester A, Muñoz R, Quiles M (2010) Chlororespiration and tolerance to drought, heat and high illumination. J Plant Physiol 167(9):732–738

    Article  PubMed  Google Scholar 

  • IPCC (2019) Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press.

  • Islam MR, Feng B, Chen T, Tao L, Fu G (2018) Role of abscisic acid in thermal acclimation of plants. J Plant Biol 61(5):255–264

    Article  CAS  Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985. https://doi.org/10.3389/fpls.2018.00985

    Article  PubMed  PubMed Central  Google Scholar 

  • Jangale BL, Chaudhari RS, Azeez A, Sane PV, Sane AP, Krishna B (2019) Independent and combined abiotic stresses affect the physiology and expression patterns of DREB genes differently in stress-susceptible and resistant genotypes of banana. Physiol Plant 165:303–318

    Article  CAS  PubMed  Google Scholar 

  • Janni M, Gulli M, Maestri E et al (2020) Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. J Exp Bot 71(33):3780–3802. https://doi.org/10.1093/jxb/eraa034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha UC, Bohra A, Singh NP (2014) Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133:679–701

    Article  Google Scholar 

  • Ji CY, Jin R, Xu Z (2017) Overexpression of Arabidopsis P3B increases heat and low temperature stress tolerance in transgenic sweetpotato. BMC Plant Biol 17(1):139

    Article  PubMed  PubMed Central  Google Scholar 

  • Jungkunz I, Link K, Vogel F et al (2011) AtHsp70 decient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV. Plant J 66:983–995

    Article  CAS  PubMed  Google Scholar 

  • Kang CH, Lee SY, Park JH et al (2015) Stress-driven structural and functional switching of Ypt1p from a GTPase to a molecular chaperone mediates thermo-tolerance in Saccharomyces cerevisiae. FASEB J 29:4424–4434

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PSII activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma 251:1007–1019. https://doi.org/10.1007/s00709-014-0610-7

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Iqbal R, Fatma M, Per Tasir S, Naser A, Khan A, Nafees A (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00462

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang CH, Lee YM, Park JH et al (2016) Ribosomal P3 protein AtP3B of Arabidopsis acts as both protein and RNA chaperone to increase tolerance of heat and cold stresses. Plant Cell Environ 39(7):1631–1642

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Anwar S, Ashraf MY, Khaliq B, Sun M, Hussain S, Gao ZQ, Noor H, Alam S (2019) Mechanisms and adaptation strategies to improve heat tolerance in rice. A review. Plants (basel) 8(11):508. https://doi.org/10.3390/plants8110508

    Article  CAS  Google Scholar 

  • Khatri N, Katiyar A, Mudgil Y (2012) Role of G protein signaling components in plant stress management. Plant Stress 6(1):1–9

    Google Scholar 

  • Konzen RE, Recchia HG, Cassieri F et al (2019) DREB genes from common bean (Phaseolus vulgaris) show broad to specific abiotic stress responses and distinct levels of nucleotide diversity. Int J Genom. https://doi.org/10.1155/2019/9520642

    Article  Google Scholar 

  • Ku YS, Wong JWH, Mui Z et al (2015) Small RNAs in plant responses to abiotic stresses: regulatory roles and study methods. Int J Mol Sci 16:24532–24554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Kaushal N, Nayyar H, Gaur P (2012) Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmoprotectants. Acta Physiol Plant 34:1651–1658

    Article  CAS  Google Scholar 

  • Kumar RR, Goswami S, Shamim M, Mishra U, Jain M, Singh K, Singh JP, Dubey K, Singh S, Rai GK, Singh GP, Pathak H, Chinnusamy V and Praveen S (2017) Biochemical defense response: characterizing the plasticity of source and sink in spring wheat under terminal heat stress. Front Plant Sci 8:1603. https://doi.org/10.3389/fpls.2017.01603

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar RR, Arora K, Goswami S, Sakhare A, Singh B, Chinnusamy V, Praveen S (2020) MAPK Enzymes: a ROS activated signaling sensors involved in modulating heat stress response, tolerance and grain stability of wheat under heat stress. 3 Biotech. 10(9):380. https://doi.org/10.1007/s13205-020-02377-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Kupers JJ, Oskam L, Pierik R (2020) Photoreceptors regulate plant developmental plasticity through auxin. Plants 9:940. https://doi.org/10.3390/plants9080940

    Article  CAS  PubMed Central  Google Scholar 

  • Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang S, Liu X, Xue H, Li X, Wang X (2017) Functional characterization of BnHSFA4a as a heat shock transcription factor in controlling the re-establishment of desiccation tolerance in seeds. J Exp Bot 68:2361–2375

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Hubel A, Schoffl F (1995) Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J 8(4):603–612

    Article  CAS  PubMed  Google Scholar 

  • Lenzoni G, Knight MR (2019) Increases in absolute temperature stimulate free calcium concentration elevations in the chloroplast. Plant Cell Physiol. 60(3):538–548

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wei Z, Qiao Z et al (2013) Proteomics analysis of alfalfa response to heat stress. PLoS ONE 8(12):e82725

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Liu J, Liu Z, Li X, Wu F, He Y (2014) Heat-induced tas1 target1 mediates thermotolerance via heat stress transcription factor a1a-directed pathways in arabidopsis. Plant Cell 26:1764–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Alonso-Peral M, Wong G, Wang MB, Millar AA (2016) BMC Plant Biol 16:179

    Article  PubMed  PubMed Central  Google Scholar 

  • Li F, Zhang H, Zhao H et al (2018) Chrysanthemum CmHSFA4 gene positively regulates salt stress tolerance in transgenic Chrysanthemum. Plant Biotech J 16:1311–1321

    Article  CAS  Google Scholar 

  • Li N, Euring D, Cha JY, Lin Z, Lu M, Huang L-J, Kim WY (2021) Plant hormone-mediated regulation of heat tolerance in response to global climate change. Front Plant Sci 11:627969. https://doi.org/10.3389/fpls.2020.627969

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao WY, Lin LF, Jheng JL, Wang CC, Yang JH, Chou ML (2016) Identification of heat shock transcription factor genes involved in thermotolerance of octoploid cultivated strawberry. Int J Mol Sci. 17(12):2130

    Article  PubMed Central  Google Scholar 

  • Liao C, Zheng Y, Guo Y (2017) MYB30 transcription factor regulates oxidative and heat stress responses through ANNEXIN-mediated cytosolic calcium signaling in Arabidopsis. New Phytologist 1:163–177

    Article  Google Scholar 

  • Lin JS, Kuo CC, Yang IC et al (2018) MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis. Front Plant Sci 9:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu HC, Charng YY (2013) Common and distinct functions of Arabidopsis class A1 & A2 heat shock factors in diverse abiotic stress responses and development. J Plant Physiol 163:276–290

    Article  CAS  Google Scholar 

  • Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY, Zhou RG (2008) The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J 55:760–773

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhang C, Wei C et al (2016) The ring finger ubiquitin E3 Ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiol 170:429–443

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Yan S, Yang T et al (2017) Small RNAs in regulating temperature stress response in plants. J Int Plant Biol 59(11):774–791. https://doi.org/10.1111/jipb.12571

    Article  CAS  Google Scholar 

  • Ma H, Wang C, Yang B, Cheng H, Wang Z, Mijiti A et al (2016) CarHSFB2, a class B heat shock transcription factor, is involved in different developmental processes and various stress responses in chickpea (Cicer arietinum L.). Plant Mol Biol Rep 34:1–14. https://doi.org/10.1007/s11105-015-0892-8

    Article  CAS  Google Scholar 

  • Medvedev SS (2005) Calcium signaling system in plants. Russ J Plant Physiol 52:249–270. https://doi.org/10.1007/s11183-005-0038-1

    Article  CAS  Google Scholar 

  • Meng X, Wang JR, Wang GD, Liang XQ, Li XD, Meng QW (2015) An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato. J.Plant Physiol. 175:1–8

    Article  CAS  PubMed  Google Scholar 

  • Mishra D, Shekhar S, Singh D, Chakraborty S, Chakraborty N (2018) Heat Shock Proteins and abiotic stress tolerance in plants. In: Asea and Kaur (ed) Regulation of Heat Shock Protein Responses, vol 13, Springer, Cham pp 41–69

  • Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N (2007) Heterotrimeric Gprotein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. Plant J 51:656–669

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Van Breusegem Gollery M, F, (2004) Reactive oxygen gene network of plants. Trends Plant Sci. 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37(3):118–125

    Article  CAS  PubMed  Google Scholar 

  • Moon H, Lee B, Choi G et al (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci 100(1):358–363. https://doi.org/10.1073/pnas.252641899

    Article  CAS  PubMed  Google Scholar 

  • Moore CE, Meacham-Hensold K, Lemonnier P, Slattery RA, Benjamin C, Bernacchi CJ, Lawson T, Cavanagh AP (2021) The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J Exp Bot 72(8):2822–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales D, Rodrıguez P, Dellamico J, Nicolas E, Torrecillas A, Sanchez-Blanco MJ (2003) High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol Plant. 47:203–208. https://doi.org/10.1023/B:BIOP.0000022252.70836.fc

    Article  Google Scholar 

  • Muller M, Munne-Bosch S (2015) Ethylene response factors: a Key regulatory hub in hormone and stress signaling. J Plant Physiol 169(1):32–41

    Article  CAS  Google Scholar 

  • Nadeem Md, Li J, Wang M et al (2018) Unraveling field crops sensitivity to heat stress: mechanisms, approaches, and future prospects. Agronomy 8(7):128

    Article  CAS  Google Scholar 

  • Nakamoto H, Vigh L (2007) The small heat shock proteins and their clients. Cell Mol Life Sci 64:294–306

    Article  CAS  PubMed  Google Scholar 

  • Nie WF, Wang MM, Xia XJ et al (2013) Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H2O2 generation and stress tolerance. Plant Cell Environ 36:789–803

    Article  CAS  PubMed  Google Scholar 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22(1):53–65

    Article  CAS  PubMed  Google Scholar 

  • Park HC, Cha JY, Yun DJ (2013) Roles of YUCCAs in auxin biosynthesis and drought stress responses in plants. Plant Signal Behav 8:e24495

    Article  Google Scholar 

  • Peng X, Zhang X, Li B, Zhao L (2019) Cyclic nucleotide-gated ion channel 6 mediates thermotolerance in Arabidopsis seedlings by regulating nitric oxide production via cytosolic calcium ions. BMC Plant Biol 19:368. https://doi.org/10.1186/s12870-019-1974-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Salamo I, Papdi C, Rigó G et al (2014) The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiol 165:319–334. https://doi.org/10.1104/pp.114.237891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piramila BHM, Prabha AL, Nandagopalan V, Stanley AL (2012) Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of black gram. Int J Pharm Phytopharmacol Res 1:194–202

    CAS  Google Scholar 

  • Poor P, Nawaz K, Gupta R et al (2021) Ethylene involvement in the regulation of heat stress tolerance in plants. Plant Cell Rep. https://doi.org/10.1007/s00299-021-02675-8

    Article  PubMed  Google Scholar 

  • Prasad S, Jaiswal B, Singh S et al (2018) Evaluation of wheat (Triticum aestivum L.) varieties for heat tolerance at grain growth stage by physio-molecular approaches. Int J Curr Microbio App Sci 7:3745–3750

    Google Scholar 

  • Rai AN, Saini N, Yadav R, Suprasanna P (2020) A potential seedling-stage evaluation method for heat tolerance in Indian mustard (Brassica juncea L. Czern and Coss). 3 Biotech 10(3):114. https://doi.org/10.1007/s13205-020-2106-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravichandran S, Ragupathy R, Edwards T, Domaratzki M, Cloutier S (2019) MicroRNA-guided regulation of heat stress response in wheat. BMC Genomics 20:488. https://doi.org/10.1186/s12864-019-5799-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren M, Wang Z, Xue M, Wang X, Zhang F, Zhang Y et al (2019) Constitutive expression of an A-5 subgroup member in the DREB transcription factor subfamily from Ammopiptanthus mongolicus enhanced abiotic stress tolerance and anthocyanin accumulation in transgenic Arabidopsis. PLoS ONE 14(10):e0224296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant 36:1–19

    Article  CAS  Google Scholar 

  • Saddhe AA, Manuka R, Penna S (2020) Plant sugars: Homeostasis and transport under abiotic stress in plants. Physiol Plant 171(4):739–755

    Article  PubMed  Google Scholar 

  • Saha D, Mukherjee P, Dutta S et al (2019) Genomic insights into HSFs as candidate genes for high-temperature stress adaptation and gene editing with minimal off-target effects in flax. Sci Rep 9:5581. https://doi.org/10.1038/s41598-019-41936-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saidi Y, Finka A, Muriset M et al (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21(9):2829–2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saidi Y, Finka A, Goloubinoff P (2011) Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phy 190(3):556–565

    Article  CAS  Google Scholar 

  • Sajid M, Rashid B, Ali Q (2018) Mechanisms of heat sensing and responses in plants. It is not all about Ca2+ ions. Plant Biol 62:409–420

    Article  CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F et al (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. PNAS USA 103(49):18822–18827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato H, Mizoi J, Tanaka H et al (2014) Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell 26(12):4954–4973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  CAS  PubMed  Google Scholar 

  • Sehgal A, Sita K, Siddique KHM, Kumar R, Bhogireddy S, Varshney RK, Rao HB, Nair RM, Prasad PVV, Nayyar H (2018) Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Front Plant Sci 9:1705. https://doi.org/10.3389/fpls.2018.01705

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Laxmi A (2015) Jasmonates: emerging players in controlling temperature stress tolerance. Front Plant Sci 6:1129. https://doi.org/10.3389/fpls.2015.01129

    Article  PubMed  Google Scholar 

  • Siddiqi KS, Husen A (2019) Plant response to jasmonates: current developments and their role in changing environment. Bull Natl Res Cent 43:153

    Article  Google Scholar 

  • Singh A, Khurana P (2016) Molecular and functional characterization of wheat B2 protein imparting adverse temperature tolerance and influencing plant growth. Front Plant Sci 7:642

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh B, Salaria N, Thakur K et al (2019) Functional genomic approaches to improve crop plant heat stress tolerance. F1000 Res 8:1721

    Article  CAS  Google Scholar 

  • Stephens J, Barakate A (2017) Gene editing technologies – ZFNs, TALENs, and CRISPR/Cas9. 2nd edition. In: Thomas et al. ed. Encyclopedia of Applied Plant Sciences. Cambridge: Academic Press, pp. 157–161

  • Stief A, Altmann S, Hoffmann K et al (2014) Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26:1792–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumesh KV, Sharma-Natu P, Ghildiyal MC (2008) Starch synthase activity and heat shock prote1in in relation to thermal tolerance of developing wheat grains. Biol Plant 52:749–753. https://doi.org/10.1007/s10535-008-0145-x

    Article  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Post transcriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suprasanna P (2020) Plant abiotic stress tolerance: Insights into resilience build-up. J Biosci 45:120

    Article  PubMed  Google Scholar 

  • Suprasanna P, Nikalje GC, Rai AN (2015) Osmolyte accumulation and implications in plant abiotic stress tolerance. In: Iqbal N, Nazar R, Khan NA (eds) Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi, pp 1–12

    Google Scholar 

  • Tang M, Xu L, Wang Y, Cheng W, Luo X, Xie Y, Fan L, Liu L (2019) Genome-wide characterization and evolutionary analysis of heat shock transcription factors (HSFs) to reveal their potential role under abiotic stresses in radish (Raphanus sativus L.). BMC genomics 20(1):772. https://doi.org/10.1186/s12864-019-6121-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thung L, Chakravorty D, Trusov Y, Jones AM, Botella JR (2013) Signaling Specificity Provided by the Arabidopsis thaliana Heterotrimeric G-Protein γ Subunits AGG1 and AGG2 Is Partially but Not Exclusively Provided through Transcriptional Regulation. PLOS ONE 8(3):e58503. https://doi.org/10.1371/journal.pone.0058503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres AC, Sepulveda G, Kahlaoui B (2017) Phytohormone interaction modulating fruit responses to photooxidative and heat stress on apple. Front Plant Sci 8:2129

    Article  PubMed  PubMed Central  Google Scholar 

  • Toth SZ, Schansker G, Kissimon J, Kovacs L, Garab G, Strasser RJ (2005) Biophysical studies of photosystem II-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.). J. Plant Physiol. 162:181–194. https://doi.org/10.1016/j.jplph.2004.06.010

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N (2009) Signaling through G protein coupled receptors. Plant Signal Behav 4:942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udvardi MK, Kakar K, Wandrey M et al (2007) Legume transcription factors: global regulators of plant development and response to the environment. J Plant Physiol 144(2):538–549

    Article  CAS  Google Scholar 

  • Wang F, Zang X, Kabir MR et al (2014) A wheat lipid transfer protein 3 could enhance the basal thermotolerance and oxidative stress resistance of Arabidopsis. Gene 550:18–26

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Dinler BS, Vignjevic M, Jacobsen S, Wollenweber B (2015) Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars. Plant Sci 230:33–50

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016) HSP90 regulates temperature- dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun 7:10269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XL, Chen X, Yang TB, Cheng Q, Cheng ZM (2017a) Genome-Wide Identification of bZIP Family Genes Involved in Drought and Heat Stresses in Strawberry (Fragaria vesca). Int J Genom. https://doi.org/10.1155/2017/3981031

    Article  Google Scholar 

  • Wang X, Xu C, Cai X, Wang Q, Dai S (2017b) Heat-responsive photosynthetic and signaling pathways in plants: insight from proteomics. Int J Mol Sci 18(10):2191. https://doi.org/10.3390/ijms18102191

    Article  CAS  PubMed Central  Google Scholar 

  • Wang X, Zhuang L, Shi Y, Huang B (2017c) Up-regulation of HSFA2c and HSPs by ABA contributing to improved heat tolerance in tall fescue and Arabidopsis. Int J Mol Sci 18(9):1981. https://doi.org/10.3390/ijms18091981

    Article  CAS  PubMed Central  Google Scholar 

  • Wang Y, Zhang Y, Zhou R, Dossa K, Yu J, Li D, Liu A, Zhang X, You J (2018) Identification and characterization of the bZIP transcription factor family and its expression in response to abiotic stresses in sesame. PLoS ONE. 1:0200850

    Google Scholar 

  • Wang W, Qiu X, Yang Y, Kim SH, Jia X, Yu H, Kwak SS (2019) Sweet potato bZIP transcription factor IbABF4 confers tolerance to multiple abiotic stresses. Front Plant Sci 10:630. https://doi.org/10.3389/fpls.2019.00630

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Malik A, Chen X, Wang J, Wang D, Wang S, Chen C, Guo L, Ye W (2020a) Differentially expressed bZIP transcription factors confer multi-tolerances in Gossypium hirsutum. Int J Biol Macro. 146:569–578

    Article  CAS  Google Scholar 

  • Wang J, Song L, Gong X, Xu J, Li M (2020b) Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci 21(4):1446

    Article  CAS  PubMed Central  Google Scholar 

  • Watanabe E, Mano S, Nomoto M, Tada Y, Hara-Nishimura I, Nishimura M, Yamada K (2016) HSP90 stabilizes auxin-responsive phenotypes by masking a mutation in the auxin receptor TIR1. Plant Cell Physiol 57(11):2245–2254

    Article  CAS  PubMed  Google Scholar 

  • Wolkovich EM, Cook BI, Allen JM et al (2012) Warming experiments under predict plant phenological responses to climate change. Nature 485(7399):494–497

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Yang C (2019) Ethylene-mediated signaling confers thermotolerance and regulates transcript levels of heat shock factors in rice seedlings under heat stress. Bot Stud. https://doi.org/10.1186/s40529-019-0272-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu C, Huang B (2008) Proteomic response to heat stress in the roots of Agrostis grass species contrasting in heat tolerance. J Exp Bot 59:4183–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Xu X, Shi Y, Xu J, Huang B (2014) Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress. PLoS ONE 9(7):e100792

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue GP, Drenth J, McIntyre CL (2015) TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. J Exp Bot. 66(3):1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Fukao Y, Hayashi M et al (2007) Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 282(52):37794–37804

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Wu F, Ma T (2019) Comprehensive analysis of bZIP transcription factors uncovers their roles during dimorphic floret differentiation and stress response in Cleistogenes songorica. BMC Genomics 20:760

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Chen J, Liu Q, Ben C, Todd CD, Shi J, Yang Y, Hu X (2012) Comparative proteomic analysis of the thermotolerant plant portulaca oleracea acclimation to combined high temperature and humidity stress. J Prot Res 11:3605–23. https://doi.org/10.1021/pr300027a

    Article  CAS  Google Scholar 

  • Yoshida T, Ohama N, Nakajima J et al (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Gene Genom 286(5–6):321–332

    Article  CAS  Google Scholar 

  • Yu X, Wang H, Lu YZ et al (2012) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63:1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Zaveri E, Lobell DB (2019) The role of irrigation in changing wheat yields and heat sensitivity in India. Nat Commun 10:4144

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Wang Q (2015) MicroRNA-based biotechnology for plant improvement. J Cell Physiol 230:1–15

    Article  PubMed  Google Scholar 

  • Zhao Y, Tian X, Wang F (2017) Characterization of wheat MYB genes responsive to high temperatures. BMC Plant Biol 17(1):208

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou R, Yu X, Ottosen C (2020) Unique miRNAs and their targets in tomato leaf responding to combined drought and heat stress. BMC Plant Biol 20:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Ding YF, Liu HL (2011) MiR398 and plant stress responses. Physiol Plant 143:1–9

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Wang Y, Liu Y et al (2018) Overexpression of BcHsfA1 transcription factor from Brassica campestris improved heat tolerance of transgenic tobacco. PLoS ONE 13(11):e0207277. https://doi.org/10.1371/journal.pone.0207277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

NS: Literature survey and first draft; GN: conceptualization, literature survey, and revision; SMZ: revision; PS: conceptualization, critical revision, and final draft. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ganesh Chandrakant Nikalje or Penna Suprasanna.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, N., Nikalje, G.C., Zargar, S.M. et al. Molecular insights into sensing, regulation and improving of heat tolerance in plants. Plant Cell Rep 41, 799–813 (2022). https://doi.org/10.1007/s00299-021-02793-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02793-3

Keywords

Navigation