Skip to main content

Targeted Mutagenesis for Functional Analysis of Gene Duplication in Legumes

  • Protocol
  • First Online:
Legume Genomics

Abstract

Assessment of gene function oftentimes requires mutant populations that can be screened by forward or reverse genetic analysis. The situation becomes more complicated in polyploidy or paleopolyploid genomes that have two or more copies for most genes. Here we describe a method for engineering zinc-finger nucleases (ZFNs) for the purpose of creating targeted mutations in the paleopolyploid soybean genome. ZFNs are recombinant proteins composed of an engineered zinc-finger array fused to a nonspecific cleavage domain. When engineered to recognize a specific nucleotide sequence, the cleavage domain will generate highly mutagenic DNA double-strand breaks frequently resulting in insertions and deletions at the target locus. Depending on the number of target sites present within the genome, this method has the capacity to target either single- or multi-copy gene families. In this chapter, we describe an inexpensive, rapid, and user-friendly approach for ZFN assembly and application in soybean based on the previously described context-dependent assembly method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curtin SJ, Voytas DF, Stupar RM (2012) Genome engineering of crops with designer nucleases. Plant Genome 5:42–50

    Article  CAS  Google Scholar 

  2. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160

    Article  PubMed  CAS  Google Scholar 

  3. Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764

    Article  PubMed  CAS  Google Scholar 

  4. Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300:763

    Article  PubMed  Google Scholar 

  5. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M et al (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301

    Article  PubMed  CAS  Google Scholar 

  6. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D et al (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8:67–69

    Article  PubMed  CAS  Google Scholar 

  7. Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci U S A 102:2232–2237

    Article  PubMed  CAS  Google Scholar 

  8. Wright DA, Townsend JA, Winfrey RJ, Irwin PA, Rajagopal J, Lonosky PM et al (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705

    Article  PubMed  CAS  Google Scholar 

  9. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    Article  PubMed  CAS  Google Scholar 

  10. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Article  PubMed  CAS  Google Scholar 

  11. Gao H, Smith J, Yang M, Jones S, Djukanovic V, Nicholson MG et al (2010) Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J 61:176–187

    Article  PubMed  CAS  Google Scholar 

  12. Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ et al (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156:466–473

    Article  PubMed  CAS  Google Scholar 

  13. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  PubMed  CAS  Google Scholar 

  14. Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey RJ, Hirsh AS, Eichtinger M et al (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 1:1637–1652

    Article  PubMed  Google Scholar 

  15. Ramirez CL, Foley JE, Wright DA, Muller-Lerch F, Rahman SH, Cornu TI et al (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5:374–375

    Article  PubMed  CAS  Google Scholar 

  16. Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M et al (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci U S A 107:12028–12033

    Article  PubMed  CAS  Google Scholar 

  17. Paz MM, Martinez JC, Kalvig AB, Fonger TM, Wang K (2006) Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25:206–213

    Article  PubMed  CAS  Google Scholar 

  18. Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M et al (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239

    Article  PubMed  CAS  Google Scholar 

  19. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  20. Kim MY, Lee S, Van K, Kim TH, Jeong SC, Choi IY et al (2010) Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc Natl Acad Sci U S A 107:22032–22037

    Article  PubMed  CAS  Google Scholar 

  21. Young ND, Debelle F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524

    Article  PubMed  CAS  Google Scholar 

  22. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    Article  CAS  Google Scholar 

  23. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  PubMed  CAS  Google Scholar 

  24. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  PubMed  CAS  Google Scholar 

  25. Händel EM, Alwin S, Cathomen T (2008) Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Mol Ther 17:104–111

    Article  PubMed  Google Scholar 

  26. Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK (2009) Oligomerized pool engineering (OPEN): an “open-source” protocol for making customized zinc-finger arrays. Nat Protoc 4:1471–1501

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Minnesota Soybean Research and Promotion Council (project #19-12C) and the United Soybean Board (project #2506).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Curtin, S.J. et al. (2013). Targeted Mutagenesis for Functional Analysis of Gene Duplication in Legumes. In: Rose, R. (eds) Legume Genomics. Methods in Molecular Biology, vol 1069. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-613-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-613-9_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-612-2

  • Online ISBN: 978-1-62703-613-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics