Skip to main content
Log in

Functional identification of apple MdJAZ2 in Arabidopsis with reduced JA-sensitivity and increased stress tolerance

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Here, we report the decrease of JA-sensitivity and enhancement of tolerance to salt and PEG stresses in Arabidopsis overexpressing apple MdJAZ2.

Abstract

As signalling molecules, jasmonates (JAs) play significant roles in plant development and stress responses. JAZ proteins are the targets of the SCFCOI1 complex and act as the negative regulators in JA signalling pathway. However, there are no reports regarding the biological function of apple JAZ genes. In this study, one JAZ gene, MdJAZ2 from apple, was functionally characterized in detail. The expression of MdJAZ2 was up-regulated by MeJA and wounding treatments. MdJAZ2-GFP fusion protein was observed in nucleus in transient expression assay. Yeast two-hybrid and bimolecular fluorescence complementation assays revealed that MdJAZ2 could form homo- and heteromers, and also interact with F-box protein MdCOI1. Overexpression of MdJAZ2 conferred impaired JA-sensitivity in transgenic Arabidopsis, including JA-mediated root growth inhibition, susceptibility to the bacterial pathogen Pst DC3000, and the expression of JA response genes. Additionally, MdJAZ2 overexpression also improved tolerance to NaCl and PEG treatments in transgenic Arabidopsis. Together, our findings suggest that apple MdJAZ2 was not only involved in the JA response but also played roles in stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

6-BA:

6-Benzylaminopurine

AD:

Activation domain

BD:

Binding domain

BiFC:

Bimolecular fluorescence complementation

CaMV:

Cauliflower mosaic virus

COI1:

Coronatine insensitive 1

CYFP:

C-terminal halves of the yellow fluorescent protein

GFP:

Green fluorescent protein

IAA:

Indole-3-acetic acid

JA:

Jasmonate

JAZ:

Jasmonate zim-domain

MeJA:

Methyl jasmonate

MS:

Murashige and skoog

NYFP:

N-terminal halves of the yellow fluorescent protein

PEG:

Polyethylene glycol

Pst DC3000:

Pseudomonas syringae tomato DC3000

WT:

Wild type

Y2H:

Yeast two-hybrid

ZIM:

Zinc-finger expressed in inflorescence meristem

ZML:

ZIM-like

References

  • An XH, Tian Y, Chen KQ, Liu XJ, Liu DD, Xie XB, Cheng CG, Cong PH, Hao YJ (2015) MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant Cell Physiol 56:650–662

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Meng Y, Huang D, Qi Y, Chen M (2011) Origin and evolutionary analysis of the plant-specific TIFY transcription factor family. Genomics 98:128–136

    Article  CAS  PubMed  Google Scholar 

  • Browse J (2005) Jasmonate: an oxylipin signal with many roles in plants. Vitam Horm 72:431–456

    Article  CAS  PubMed  Google Scholar 

  • Browse J, Howe GA (2008) New weapons and a rapid response against insect attack. Plant Physiol 146:832–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Opez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signaling. Nature 448:666–671

    Article  CAS  PubMed  Google Scholar 

  • Chini A, Fonseca S, Chico JM, Fernandez-Calvo P, Solano R (2009) The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. Plant J 59:77–87

    Article  CAS  PubMed  Google Scholar 

  • Chung HS, Howe GA (2009) A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21:131–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung HS, Niu Y, Browse J, Howe GA (2009) Top hits in contemporary JAZ: an update on jasmonate signaling. Phytochemistry 70:1547–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Devoto A, Turner JG (2005) Jasmonate-regulated Arabidopsiss tress signalling network. Physiol Plant 123:161–172

    Article  CAS  Google Scholar 

  • Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer EE (2007) Plant biology: jasmonate perception machines. Nature 448:659–660

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-isoJasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    Article  CAS  PubMed  Google Scholar 

  • Hakata M, Kuroda M, Ohsumi A, Hirose T, Nakamura H, Muramatsu M, Ichikawa H, Yamakawa H (2012) Overexpression of a rice TIFY gene increases grain size through enhanced accumulation of carbohydrates in the stem. Biosci Biotechnol Biochem 76:2129–2134

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894

    Article  CAS  PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Katagiri F, Thilmony R, He SY (2002) The Arabidopsis thalianaPseudomonas syringae interaction. Arabidopsis Book 2002:e0039

    Article  Google Scholar 

  • Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci 105:7100–7105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Yin X, Wang H, Li J, Guo C, Gao H, Zheng Y, Fan C, Wang X (2015) Genome-wide identification and analysis of the apple (Malus × domestica Borkh.) TIFY gene family. Tree Genet Genomes 11:1–13

    Article  Google Scholar 

  • Melotto M, Mecey C, Niu Y, Chung HS, Katsir L, Yao J, Zeng W, Thines B, Staswick P, Browse J, Howe GA, He SY (2008) A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J 55:979–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez AC, Chico JM, Bossche RV, Sewell J, Gil E, García-Casado G, Witters E, Inzé D, Long JA, De Jaeger G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D (2011) The jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23:1795–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren C, Pan J, Peng W, Genschik P, Hobbie L, Hellmann H, Estelle M, Gao B, Peng J, Sun C, Xie D (2005) Point mutations in Arabidopsis Cullin1 reveal its essential role in jasmonate response. Plant J 42:514–524

    Article  CAS  PubMed  Google Scholar 

  • Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65:907–921

    Article  CAS  PubMed  Google Scholar 

  • Shan XY, Wang JX, Chua LL, Jiang DA, Peng W, Xie DX (2011) The role of Arabidopsis rubisco activase in jasmonate-induced leaf senescence. Plant Physiol 155:751–764

    Article  CAS  PubMed  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu F, Sharon M, Browes J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D (2011) The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23:1000–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staswick PE (2008) JAZing up jasmonate signaling. Trends Plant Sci 13:66–71

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thatcher LF, Cevik V, Grant M, Zhai B, Jones JDG, Manners JM, Kazan K (2016) Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum. J Exp Bot 67:2367–2386

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665

    Article  CAS  PubMed  Google Scholar 

  • Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G (2007) The tify family previously known as ZIM. Trends Plant Sci 12:239–244

    Article  CAS  PubMed  Google Scholar 

  • Wager A, Browse J (2012) Social network: JAZ protein interactions expand our knowledge of jasmonate signaling. Front Plant Sci 3:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Cao G, Wang X, Miao J, Liu X, Chen Z, Qu LJ, Gu H (2008) Identification and characterization of COI1-dependent transcription factor genes involved in JA-mediated response to wounding in Arabidopsis plants. Plant Cell Rep 27:125–135

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C (2014) Jasmonates in plant growth and stress responses. Phytohormones: a window to metabolism, signaling and biotechnological applications. Springer, New York, pp 221–263

    Book  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defence and fertility. Science 280:1091–1094

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D, Xie D (2002) The SCFCOI1 ubiquitin–ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14:1919–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Li H, Li S, Yao R, Deng H, Xie Q, Xie D (2013) The Arabidopsis F-box protein CORONATINE INSENSITIVE1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway. Plant Cell 25:486–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye H, Du H, Tang N, Li X, Xiong L (2009) Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol 71:291–305

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Gao M, Singer SD, Fei Z, Wang H, Wang X (2012) Genome-wide identification and analysis of the TIFY gene family in grape. PLoS One 7:e44465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Yan S, Sun C, Li S, Li J, Xu M, Liu X, Zhang S, Zhao Q, Li Y, Fan Y, Chen R, Wang L (2015) A maize jasmonate Zim-domain protein, ZmJAZ14, associates with the JA, ABA, and GA signaling pathways in transgenic Arabidopsis. PLoS One 10(3):e0121824

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, An F, Feng Y, Li P, Xue L, Mu A, Jiang Z, Kim JM, Kim To T, Li W, Zhang X, Yu Q, Dong Z, Chen WQ, Seki M, Zhou JM, Guo HW (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. PNAS 108:12539–12544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu D, Bai X, Luo X, Chen Q, Cai H, Ji W, Zhu Y (2013) Identification of wild soybean (Glycine soja) TIFY family genes and their expression profiling analysis under bicarbonate stress. Plant Cell Rep 32:263–272

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Doctor Start-up Fund in Liaoning Province, China (201501031), and the Fundamental Research Funds for Central Public Welfare Research Institutes (0032015019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cun-Gang Cheng.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Communicated by X. S. Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AA 9 kb)

Supplementary material 2 (DOC 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, XH., Hao, YJ., Li, EM. et al. Functional identification of apple MdJAZ2 in Arabidopsis with reduced JA-sensitivity and increased stress tolerance. Plant Cell Rep 36, 255–265 (2017). https://doi.org/10.1007/s00299-016-2077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-2077-9

Keywords

Navigation