Skip to main content
Log in

Genetic and biochemical mechanisms of rice resistance to planthopper

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

This article presents a comprehensive review on the genetic and biochemical mechanisms governing rice-planthopper interactions, aiming to contribute substantial planthopper control and facilitate breeding for resistance to planthoppers in rice.

Abstract

The rice planthopper is the most destructive pest of rice and a substantial threat to rice production. The brown planthopper (BPH), white-backed planthopper (WBPH) and small brown planthopper (SBPH) are three species of delphacid planthoppers and important piercing-sucking pests of rice. Host-plant resistance has been recognized as the most practical, economical and environmentally friendly strategy to control planthoppers. Until now, at least 30, 14 and 34 major genes/quantitative trait loci for resistance to BPH, WBPH and SBPH have been identified, respectively. Recent inheritance and molecular mapping of gene analysis showed that some planthopper-resistance genes in rice derived from different donors aggregate in clusters, while resistance to these three species of planthoppers in a single donor is governed not by any one dominant gene but by multiple genes. Notably, Bph14, Bph26, Bph3 and Bph29 were successfully identified as BPH-resistance genes in rice. Biological and chemical studies on the feeding of planthoppers indicate that rice plants have acquired various forms of defence against planthoppers. Between the rice-planthopper interactions, rice plants defend against planthoppers through activation the salicylic acid-dependent systemic acquired resistance but not jasmonate-dependent hormone response pathways. Transgenic rice for the planthopper-resistance mechanism shows that jasmonate and its metabolites function diversely in rice’s resistance to planthopper. Understanding the genetic and biochemical mechanisms underlying resistance in rice will contribute to the substantial control of such pests and facilitate breeding for rice’s resistance to planthopper more efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adjei-Afriyie F, Kim CS, Takemura M, Ishikawa M, Horiike M (2000a) Isolation and identification of the probing stimulants in the rice plant for the white-back planthopper, Sogatella furcifera (Horváth) (Homoptera: Delphacidae). Biosci Biotechnol Biochem 64:443–446

    Article  CAS  PubMed  Google Scholar 

  • Adjei-Afriyie F, Kim CS, Takemura M, Ishikawa M, Tebayashi S, Horiike M (2000b) Probing stimulants from the rice plant towards the smaller brown planthopper, Laodelphax striatellus (Fallén). Z Naturforsch C 55:1038–1043

    Article  CAS  PubMed  Google Scholar 

  • Alarn S, Cohen M (1998) Detection and analysis of QTLs for resistance to brown planthopper, Nilaparvata lugens, in a double-haploid rice population. Theor Appl Genet 9:1370–1379

    Google Scholar 

  • Allmann S, Baldwin IT (2010) Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science 329:1075–1078

    Article  CAS  PubMed  Google Scholar 

  • Bhattarai KK, Xie QG, Pourshalimi D, Younglove T, Kaloshian I (2007) Coil-dependent signaling pathway is not required for Mi-1-mediated potato aphid resistance. Mol Plant Microbe Interact 20:276–282

    Article  CAS  PubMed  Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580

    Article  CAS  PubMed  Google Scholar 

  • Bottrell D, Shoenly K (2012) Resurrecting the ghost of green revolutions past: the brown planthopper as a recurring threat to high-yielding rice production in tropical Asia. J. Asia Pacific Entomol 15:122–140

    Article  Google Scholar 

  • Brar DS, Virk PS, Jena KK, Kush GS (2009) Breeding for resistance to planthoppers in rice. In: Heong K, Hardy B (eds) Planthoppers: new threats to the sustainability of intensive rice production systems in Asia. International Rice Research Institute, Los Baños, pp 401–428

    Google Scholar 

  • Browse J, Howe GA (2008) New weapons and a rapid response against insect attack. Plant Physiol 146:832–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman R (1977) The role of the leaf surface in food selection by acridids and other insects. Colloques Internationaux du Centre National de la Recherche Scientifique France 265:133–149

    Google Scholar 

  • Cheng AX, Xiang CY, Li JX, Yang CQ, Hu WL, Wang LJ, Lou YG, Chen XY (2007) The rice (E)-beta-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry 68:1632–1641

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Zhu L, He G (2013) Towards understanding of molecular interactions between rice and the brown planthopper. Mol Plant 6:621–634

    Article  CAS  PubMed  Google Scholar 

  • Cook A, Woodhead S, Magalit V, Heinrichs E (1987) Variation in feeding behaviour of Nilaparvata lugens on resistant and susceptible rice varieties. Entomol Exp Appl 43:227–235

    Article  Google Scholar 

  • Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z, He R, Zhu L, Chen R, Han B, He G (2009) Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci USA 106:22163–22168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan C, Zhang S, Chen Q, Cheng Z, Zhai H, Wan J (2007) Evaluation of rice germplasm for resistance to the small brown planthopper and analysis on resistance mechanism. Chin J Rice Sci 21:425–430

    CAS  Google Scholar 

  • Duan C, Yu J, Bai J, Zhu Z, Wang X (2014) Induced defense responses in rice plants against small brown planthopper infestation. Crop J 2:55–62

    Article  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Felton GW, Korth KL (2000) Trade-offs between pathogen and herbivore resistance. Curr Opin Plant Biol 3:309–314

    Article  CAS  PubMed  Google Scholar 

  • Fujita D, Myint K, Matsumura M, Yasui H (2009) The genetics of host-plant resistance to rice planthopper and leafhopper. In: Heong K, Hardy B (eds) Planthoppers: new threats to the sustainability of intensive rice production systems in Asia. International Rice Research Institute, Los Baños, pp 389–400

    Google Scholar 

  • Fujita D, Kohli A, Horgan F (2013) Rice resistance to planthoppers and leafhoppers. Crit Rev Plant Sci 32:162–191

    Article  CAS  Google Scholar 

  • Guo HM, Li HC, Zhou SR, Xue HW, Miao XX (2014) Cis-12-oxo-phytodienoic acid stimulates rice defense response to a piercing-sucking insect. Mol Plant 7:1683–1692

    Article  CAS  PubMed  Google Scholar 

  • Hao P, Liu C, Wang Y, Chen R, Tang M, Du B, Zhu L, He G (2008) Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance. Plant Physiol 146:1810–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilker M, Meiners T (2010) How do plants “notice” attack by herbivorous arthropods? Biol Rev Camb Philos Soc 85:267–280

    Article  PubMed  Google Scholar 

  • Hirabayashi H, Angeles E, Kaji R (1998) Identification of brown planthopper resistance gene derived from O. officinalis using molecular markers in rice. Breed Sci 48:82

    Google Scholar 

  • Horgan F (2009) Mechanisms of resistance: a major gap in understanding planthopper-rice interactions. In: Heong K, Hardy B (eds) Planthoppers: new threats to the sustainability of intensive rice production systems in Asia. International Rice Research Institute, Los Baños, pp 281–302

    Google Scholar 

  • Huang Z, He G, Shu L, Li X, Zhang Q (2001) Identification and mapping of two brown planthopper resistance genes in rice. Theor Appl Genet 102:929–934

    Article  CAS  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  CAS  PubMed  Google Scholar 

  • Jackson MT (1997) Conservation of rice genetic resources: the role of the International Rice Genebank at IRRI. Plant Mol Biol 35:61–67

    Article  CAS  PubMed  Google Scholar 

  • Jing S, Zhang L, Ma Y, Liu B, Zhao Y, Yu H, Zhou X, Qin R, Zhu L, He G (2014) Genome-wide mapping of virulence in brown planthopper identifies loci that break down host plant resistance. PLoS ONE 9:e98911

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim M, Koh H, Fukami H (1985) Isolation of C-glycosylflavones as probing stimulant of planthoppers in rice plant. J Chem Ecol 11:441–452

    Article  CAS  PubMed  Google Scholar 

  • Kiyonaga T, Watanabe T, Miyamoto K, Suzuki Y (1997) Varietal differences in the brown planthopper egg mortality caused by antibiotic response of rice plants. Kyushu Agric Res 59:75

    Google Scholar 

  • Kobayashi T, Yamamoto K, Suetsugu Y, Kuwazaki S, Hattori M, Jairin J, Sanada-Morimura S, Matsumura M (2014) Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens. Proc Biol Sci. doi:10.1098/rspb.2014.0726

    Google Scholar 

  • Li Q, Xie QG, Smith-Becker J, Navarre DA, Kaloshian I (2006) Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. Mol Plant Microbe Interact 19:655–664

    Article  CAS  PubMed  Google Scholar 

  • Ling K, Tiongco E, Aguiero V (1977) Transmission of rice ragged stunt disease. Int Rice Res Newsl 2:11–12

    Google Scholar 

  • Ling B, Dong H, Zhang M, Xu D, Wang J (2007) Potential resistance of tricin in rice against brown planthopper Nilaparvata lugens (Stål). Acta Ecologica Sinica 27:1300–1307

    Article  CAS  Google Scholar 

  • Liu Y, Wu H, Chen H, Liu Y, He J, Kang H, Sun Z, Pan G, Wang Q, Hu J, Zhou F, Zhou K, Zheng X, Ren Y, Chen L, Wang Y, Zhao Z, Lin Q, Wu F, Zhang X, Guo X, Cheng X, Jiang L, Wu C, Wang H, Wan J (2014) A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nat Biotechnol 33:301–305

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Ju H, Zhou G, Zhu C, Erb M, Wang X, Wang P, Lou Y (2011) An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice. Plant J 68:583–596

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Li J, Ju H, Liu X, Erb M, Wang X, Lou Y (2014) Contrasting effects of ethylene biosynthesis on induced plant resistance against a chewing and a piercing-sucking herbivore in rice. Mol Plant 7:1670–1682

    Article  CAS  PubMed  Google Scholar 

  • Painter R (1951) Insect resistance in crop plants. MacMillan Company, New York

    Google Scholar 

  • Panda N, Khush G (1995) Host plant resistance to insects. CAB International, Wallingford

    Google Scholar 

  • Qi J, Zhou G, Yang L, Erb M, Lu Y, Sun X, Cheng J, Lou Y (2011) The chloroplast-localized phospholipases D a4 and a5 regulate herbivore-induced direct and indirect defenses in rice. Plant Physiol 157:1987–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi J, Li J, Han X, Li R, Wu J, Yu H, Hu L, Xiao Y, Lu J, Lou Y (2015) Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice. J Integr Plant Biol. doi:10.1111/jipb.12436

    Google Scholar 

  • Raffaele S, Leger A, Roby D (2009) Very long chain fatty acid and lipid signaling in the response of plants to pathogens. Plant Signal Behav 4:94–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman ML, Jiang W, Chu SH, Qiao Y, Ham TH, Woo MO, Lee J, Khanam MS, Chin JH, Jeung JU, Brar DS, Jena KK, Koh HJ (2009) High-resolution mapping of two rice brown planthopper resistance genes, Bph20(t) and Bph21(t), originating from Oryza minuta. Theor Appl Genet 119:1237–1246

    Article  PubMed  Google Scholar 

  • Ramesh K, Padmavathi G, Deen R, Pandey M, Lakshmi V, Bentur J (2014) Whitebacked planthopper Sogatella furcifera (Horváth) (Homoptera: Delphacidae) resistance in rice variety Sinna Sivappu. Euphytica 200:139–148

    Article  CAS  Google Scholar 

  • Renganayaki K, Fritz A, Sadasivam S, Pammi S, Harrington S, McCouch S, Kumar S, Reddy A (2002) Mapping and progress toward map-based cloning of brown planthopper biotype-4 resistance gene introgressed from Oryza officinalis into cultivated rice, O. sativa. Crop Sci 42:2112–2117

    Article  CAS  Google Scholar 

  • Rivera C, Ou S, Lida T (1966) Grassy stunt disease of rice and its transmission by Nilaparvata lugens Stål. Plant Dis Rep 50:453–456

    Google Scholar 

  • Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59:683–707

    Article  CAS  PubMed  Google Scholar 

  • Seino Y, Suzuki Y, Sogawa K (1996) An ovicidal substance produced by rice plants in response to oviposition by the whitebacked planthopper, Sogatella furcifera (Horváth) (Homoptera: Delphacidae). Appl Entomol Zool 31:467–473

    CAS  Google Scholar 

  • Shepherd T, Wynne GD (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499

    Article  CAS  PubMed  Google Scholar 

  • Shigematsu Y, Murofushi N, Ito K, Kaneda C, Kawabe S, Takahashi N (1982) Sterols and asparagines in the rice plant, endogenous factors related to resistance against the brown planthopper (Nilaparvata lugens). Agric Biol Chem 46:2877–2879

    CAS  Google Scholar 

  • Sidhu N, Basal U, Shukla K, Saini R (2005) Genetics of resistance to whitebacked planthopper in five rice stocks. SABRAO J Breed Genet 37:43–49

    Google Scholar 

  • Sōgawa K (1974) Studies on the feeding habits of the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae): IV. Probing stimulant. Appl Entomol Zool 9:204–214

    Google Scholar 

  • Sōgawa K (1982) The rice brown planthopper: feeding physiology and host plant interactions. Ann Rev Entomol 27:49–73

    Article  Google Scholar 

  • Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK (2006) Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol 61:897–915

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Su C, Wang C, Zhai H, Wan J (2005) Mapping of a major resistance gene to the brown planthopper in the rice cultivar Rathu Heenati. Breed Sci 55:391–396

    Article  CAS  Google Scholar 

  • Suzuki Y, Sogawa K, Seino Y (1996) Ovicidal reaction of rice plants against the whitebacked planthopper, Sogatella furcifera Horváth (Homoptera: Delphacidae). Appl Entomol Zool 31:111–118

    Google Scholar 

  • Tamura Y, Hattori M, Yoshioka H, Yoshioka M, Takahashi A, Wu J, Sentoku N, Yasui H (2014) Map-based cloning and characterization of a brown planthopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Sci Rep 4:5872

    PubMed  Google Scholar 

  • Tan GX, Weng QM, Ren X, Huang Z, Zhu LL, He GC (2004) Two whitebacked planthopper resistance genes in rice share the same loci with those for brown planthopper resistance. Heredity 92:212–217

    Article  CAS  PubMed  Google Scholar 

  • Tong X, Qi J, Zhu X, Mao B, Zeng L, Wang B, Li Q, Zhou G, Xu X, Lou Y, He Z (2012) The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway. Plant J 71:763–775

    Article  CAS  PubMed  Google Scholar 

  • Tuyen L, Liu Y, Jiang L, Wang B, Wang Q, Than T, Wan J (2012) Identification of quantitative trait loci associated with small brown planthopper (Laodelphax striatellus Fallén) resistance in rice (Oryza sativa L.). Hereditas 149:16–23

    Article  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Walling LL, Thompson G (2012) Behavioral and molecular-genetic basis of resistance against phloem-feeding insects. In: Thompson G, Van Bel A (ed). Oxford, Wiley-Blackwell, pp 328–351

  • Wang B, Jiang L, Chen L, Lu B, Wang Q, Tuyen L, Fan J, Cheng X, Zhai H, Xu D, Wan J (2010) Screening of rice resources against rice black-streaked dwarf virus and mapping of resistant QTL. Acta Agron Sin 36:1258–1264

    Article  CAS  Google Scholar 

  • Wang Q, Li J, Hu L, Zhang T, Zhang G, Lou Y (2013) OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. Plant Cell Rep 32:1075–1084

    Article  PubMed  Google Scholar 

  • Wang B, Zhou G, Xin Z, Ji R, Lou Y (2015a) (Z)-3-hexenal, one of the green leaf volatiles, increases susceptibility of rice to the white-backed planthopper sogatella furcifera. Plant Mol Biol Rep 33:377–387. doi:10.1007/s11105-014-0756-7

    Article  CAS  Google Scholar 

  • Wang Y, Cao L, Zhang Y, Cao C, Liu F, Huang F, Qiu Y, Li R, Lou X (2015b) Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. J Exp Bot 66:6035–6045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodhead S, Chapman R (1986) Insect behaviour and the chemistry of plant surface waxes. In: Juniper B, Southwood T (eds) Insects and the plant surface. Edward Arnold, London, pp 123–135

    Google Scholar 

  • Woodhead S, Padgham DE (1988) The effect of plant surface characteristics on resistance of rice to the brown planthopper, Nilaparvata lugens. Entomol Exp Appl 47:15–22

    Article  Google Scholar 

  • Xiao Y, Wang Q, Erb M, Turlings TC, Ge L, Hu L, Li J, Han X, Zhang T, Lu J, Zhang G, Lou Y (2012) Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecol Lett 15:1130–1139

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki M, Tsunematsu H, Yoshimura A, Iwata N, Yasui H (1999) Quantitative trait locus mapping of ovicidal response in rice (Oryza sativa L.) against whitebacked planthopper (Sogatella furcifera Horváth). Crop Sci 39:1178–1183

    Article  CAS  Google Scholar 

  • Yamasaki M, Yoshimura A, Yasui H (2000) Mapping of quantitative trait loci of ovicidal response to brown planthopper (Nilaparvata lugens Stål) in rice (Oryza sativa L.). Breed Sci 20:291–296

    Article  Google Scholar 

  • Yamasaki M, Yoshimura A, Yasui H (2003) Genetic basis of ovicidal response to whitebacked planthopper Sogatella furcifera (Horváth) in rice (Oryza sativa L.). Mol Breed 12:133–143

    Article  CAS  Google Scholar 

  • Yang Y, Xu J, Leng Y, Xiong G, Hu J, Zhang G, Huang L, Wang L, Guo L, Li J, Chen F, Qian Q, Zeng D (2014) Quantitative trait loci identification, fine mapping and gene expression profiling for ovicidal response to whitebacked planthopper (Sogatella furcifera Horváth) in rice (Oryza sativa L.). BMC Plant Biol 14:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye M, Luo SM, Xie JF, Li YF, Xu T, Liu Y, Song YY, Zhu-Salzman K, Zeng RS (2012) silencing COI1 in rice increases susceptibility to chewing insects and impairs inducible defense. PLoS ONE 7:e36214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Zhang W, Lian B, Gu L, Zhou Q, Liu T (1999) Insecticidal effects of extracts from two rice varieties to brown planthopper, Nilaparvata lugens. J Chem Ecol 25:1843–1853

    Article  CAS  Google Scholar 

  • Zhang F, Zhu L, He G (2004) Differential gene expression in response to brown planthopper feeding in rice. J Plant Physiol 161:53–62

    Article  CAS  PubMed  Google Scholar 

  • Zhang YX, Wang Q, Jiang L, Liu LL, Wang BX, Shen YY, Cheng XN, Wan JM (2011) Fine mapping of qSTV11 KAS, a major QTL for rice stripe disease resistance. Theor Appl Genet 122:1591–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Dong Y, Yang L, Ma B, Ma R, Huang F, Wang C, Hu H, Li C, Yan C, Chen J (2014) Small brown planthopper resistance loci in wild rice (Oryza officinalis). Mol Genet Genomics 289:373–382

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Yang L, Li M, Ma B, Yan C, Chen J (2015) Omics-based comparative transcriptional profiling of two contrasting rice genotypes during early infestation by small brown planthopper. Int J Mol Sci 16:28746–28764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Wen J, Cai D, Li P, Xu D, Zhang S (2008) Southern rice black-streaked dwarf virus: a new proposed Fiji virus species in the family Reoviridae. Chin Sci Bull 53:3677–3685

    Article  CAS  Google Scholar 

  • Zhou G, Qi J, Ren N, Cheng J, Erb M, Mao B, Lou Y (2009) Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J 60:638–648

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Ren N, Qi J, Lu J, Xiang C, Ju H, Cheng J, Lou Y (2014) The 9-lipoxygenase Osr9-LOX1 interacts with the 13-lipoxygenase-mediated pathway to regulate resistance to chewing and piercing-sucking herbivores in rice. Physiol Plant 152:59–69

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 31301289), Research on Public Welfare Technology Application Projects of Zhejiang Province (Grant No. 2014C32015) and the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY12C13001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Weilin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by N. Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, Y., Weilin, Z. Genetic and biochemical mechanisms of rice resistance to planthopper. Plant Cell Rep 35, 1559–1572 (2016). https://doi.org/10.1007/s00299-016-1962-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-1962-6

Keywords

Navigation