Skip to main content
Log in

A high efficient protocol for soybean root transformation by Agrobacterium rhizogenes and most stable reference genes for RT-qPCR analysis

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A 55 % transformation efficiency was obtained by our optimized protocol; and we showed that GmELF1 - β and GmELF1 - α are the most stable reference genes for expression analyses under this specific condition.

Abstract

Gene functional analyses are essential to the validation of results obtained from in silico and/or gene-prospecting studies. Genetic transformation methods that yield tissues of transient expression quickly have been of considerable interest to researchers. Agrobacterium rhizogenes-mediated transformation methods, which are employed to generate plants with transformed roots, have proven useful for the study of stress caused by root phytopathogens via gene overexpression and/or silencing. While some protocols have been adapted to soybean plants, transformation efficiencies remain limited; thus, few viable plants are available for performing bioassays. Furthermore, mRNA analyses that employ reverse transcription quantitative polymerase chain reactions (RT-qPCR) require the use of reference genes with stable expression levels across different organs, development steps and treatments. In the present study, an A. rhizogenes-mediated soybean root transformation approach was optimized. The method delivers significantly higher transformation efficiency levels and rates of transformed plant recovery, thus enhancing studies of soybean abiotic conditions or interactions between phytopathogens, such as nematodes. A 55 % transformation efficiency was obtained following the addition of an acclimation step that involves hydroponics and different selection processes. The present study also validated the reference genes GmELF1-β and GmELF1-α as the most stable to be used in RT-qPCR analysis in composite plants, mainly under nematode infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alpizar E, Dechamp E, Espeout S, Royer M, Lecouls AC, Nicole M, Bertrand B, Lashermes P, Etienne H (2006) Efficient production of Agrobacterium rhizogenes-transformed root and composite plants for studying gene expression in coffee root. Plant Cell Rep 25:959–967. doi:10.1007/s00299-006-0159-9

    Article  CAS  PubMed  Google Scholar 

  • Alpizar E, Dechamp E, Lapeyre-Montes F, Guilhaumon C, Bertrand B, Jourdan C, Lashermes P, Etienne H (2008) Agrobacterium rhizogenes-transformed root of coffee (Coffea Arabica): conditions for long-term proliferation, and morphological and molecular characterization. Ann Bot 101:929–940. doi:10.1093/aob/mcn027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alzohairy AM, MacDonald MH, Matthews BF (2013) The pJan25 vector series: an enhancement of the gateway-compatible vector pGWB533 for broader promoter testing applications. Plasmid 69:249–256. doi:10.1016/j.plasmid.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  • Andersen LC, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Barros LMG, Viana AAB, Carneiro M (2004) Aprendendo with as Agrobactérias [learning with agrobacteria]. Biotecnol Ciência Dev 32:15–27

    Google Scholar 

  • Bernard P (1996) Positive selection of recombinant DNA by CcdB. Biotechniques 21:320–323

    CAS  PubMed  Google Scholar 

  • Borges A, Tsai SM, Caldas DGG (2012) Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses. Plant Cell Rep 31:827–838. doi:10.1007/s00299-011-1204-x

    Article  CAS  PubMed  Google Scholar 

  • Bosselut N, Ghelder CV, Claverie M, Voisin R, Onesto JP, Rosso MN, Esmenjaud D (2011) Agrobacterium rhizogenes-mediated transformation of Prunus as an alternative for gene functional analysis in Hairy-root and composite plants. Plant Cell Rep 30:1313–1326. doi:10.1007/s00299-011-1043-9

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  CAS  PubMed  Google Scholar 

  • Chabaud M, Boisson-Dernier A, Zhang J, Taylor CG, Yu O, Barker DG (2006) Agrobacterium rhizogenes-mediated root transformation. In: Mathesius U, Journet EP, Sumner LW (eds) The Medicago truncatula Handbook. The Samuel Roberts Noble Foundation, Ardmore. http://www.noble.org/MedicagoHandbook/pdf/AgrobacteriumRhizogenes.pdf

  • Chattopadhyay T, Roy S, Mitra A, Maiti MK (2011) Development of a transgenic hairy root system in Jute (Corchorus Capsularis L.) with gusA reporter gene through Agrobacterium rhizogenes mediated co-transformation. Plant Cell Rep 30:485–493. doi:10.1007/s00299-010-0957-y

    Article  CAS  PubMed  Google Scholar 

  • Collier R, Fuchs B, Walter N, Lutke WK, Taylor CG (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J For Cell Mol Biol 43:449–457. doi:10.1111/j.1365-313X.2005.02454.x

    Article  CAS  Google Scholar 

  • Dekkers BJW, Willems L, Bassel GW, Bolderen-Veldkamp RPMV, Ligterink W, Hilhorst HWM, Bentsink L (2012) Identification of reference genes for RT-qPCR Expression analysis in Arabidopsis and tomato seeds. Plant Cell Physiol 53:28–37. doi:10.1093/pcp/pcr113

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Eady CC, Lister CE (1998) A comparison of four selective agents for Use with Allium Strain L. immature embryos and immature embryo-derived cultures. Plant Cell Rep 18:117–121. doi:10.1007/s002990050542

    Article  CAS  Google Scholar 

  • Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131. doi:10.1186/1471-2229-8-131

    Article  PubMed Central  PubMed  Google Scholar 

  • Hernandez-Garcia CM, Bouchard RA, Rushton PJ, Jones ML, Chen X, Timko MP, Finer JJ (2010) High level transgenic expression of soybean (Glycine Max) GmERF and Gmubi gene promoters isolated by a novel promoter analysis pipeline. BMC Plant Biol 10:237. doi:10.1186/1471-2229-10-237

    Article  PubMed Central  PubMed  Google Scholar 

  • Hu R, Fan C, Li H, Zhang Q, Fu YF (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10:93. doi:10.1186/1471-2199-10-93

    Article  PubMed Central  PubMed  Google Scholar 

  • Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-Time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284. doi:10.1038/sj.gene.6364190

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim HMM, Alkharouf NW, Meyer SLF, Aly MAM, Gamal El-Din AEKY, Hussein EHA, Matthews BF (2011) Post-transcriptional gene silencing of root-knot nematode in transformed soybean root. Exp Parasitol 127:90–99. doi:10.1016/j.exppara.2010.06.037

    Article  CAS  PubMed  Google Scholar 

  • Jian B, Liu B, Bi Y, Hou W, Wu C, Han T (2008) Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9:59. doi:10.1186/1471-2199-9-59

    Article  PubMed Central  PubMed  Google Scholar 

  • Kandoth PK, Ithal N, Recknor J, Maier T, Nettleton D, Baum TJ, Mitchum MG (2011) The soybean Rhg1 locus for resistance to the soybean cyst nematode heterodera glycines regulates the expression of a large number of stress- and defense-related genes in degenerating feeding cells. Plant Physiol 155:1960–1975. doi:10.1104/pp.110.167536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Aldrich DL, Valliyodan B, Watanabe Y, Ha CV, Nishiyama R, Guttikonda SK, Quach TN, Gutierrez-Gonzalez JJ, Tran LSP, Nguyen HT (2012) Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions. PLoS One 7:e46487. doi:10.1371/journal.pone.0046487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li JF, Park E, von Arnim AG, Nebenführ A (2009) The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods 5:1–15. doi:10.1186/1746-4811-5-6

    Article  Google Scholar 

  • Li J, Todd TC, Trick HN (2010) Rapid in planta evaluation of root expressed transgenes in chimeric soybean plants. Plant Cell Rep 29:113–123. doi:10.1007/s00299-009-0803-2

    Article  CAS  PubMed  Google Scholar 

  • Libault M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M, Clough SJ, Stacey G (2008) Identification of four soybean reference genes for gene expression normalization. Plant Genome J 1:44–54. doi:10.3835/plantgenome2008.02.0091

    Article  CAS  Google Scholar 

  • Lin MH, Gresshoff PM, Indrasumunar A, Ferguson BJ (2011) pHairyRed: a novel binary vector containing the DsRed2 reporter gene for visual selection of transgenic hairy root. Mol Plant 4:537–545. doi:10.1093/mp/ssq084

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Saint DA (2002) A New Quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal Biochem 302:52–59. doi:10.1006/abio.2001.5530

    Article  CAS  PubMed  Google Scholar 

  • Lopes-Caitar VS, Carvalho MCCG, Darben LM, Kuwahara MK, Nepomuceno AL, Dias WP, Abdelnoor RV, Marcelino-Guimarães FC (2013) Genome-wide analysis of the Hsp20 gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses. BMC Genom 577:1–17. doi:10.1186/1471-2164-14-577

    Google Scholar 

  • Mankin SL, Hill DS, Olhoft PM, Toren E, Wenck AR, Nea L, Xing L, Brown JA, Fu H, Ireland L, Jia H, Hillebrand H, Jones T, Song HS (2007) Disarming and sequencing of Agrobacterium rhizogenes strain K599 (NCPPB2659) plasmid pRi2659. Cell Dev Biol Plant 43:521–535. doi:10.1007/s11627-007-9071-4

    Article  CAS  Google Scholar 

  • Melito S, Heuberger AL, Cook D, Diers BW, MacGuidwin AE, Bent AF (2010) A nematode demographics assay in transgenic root reveals no significant impacts of the Rhg1 locus LRR-kinase on soybean cyst nematode resistance. BMC Plant Biol 10:104. doi:10.1186/1471-2229-10-104

    Article  PubMed Central  PubMed  Google Scholar 

  • Miranda VJ, Coelho RR, Viana AAB, Neto OBO, Carneiro RMDG, Rocha TL, Grossi de Sa MF, Fragoso RR (2013) Validation of reference genes aiming accurate normalization of qPCR data in soybean upon nematode parasitism and insect attack. BMC Res Notes 6:196. doi:10.1186/1756-0500-6-196

    Article  PubMed Central  CAS  Google Scholar 

  • Mohammadi-Dehcheshmeh M, Ebrahimie E, Tyerman SD, Kaiser BN (2013) A novel method based on combination of semi-in vitro and in vivo conditions in Agrobacterium rhizogenes-Mediated hairy root transformation of Glycine species. Cell Dev Biol Plant 50:282–291. doi:10.1007/s11627-013-9575-z

    Article  Google Scholar 

  • Muller PY, Janovjak H, Miserez AR, Dobbie Z (2002) Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32(6):1372–1374, 1376, 1378–1379

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakayama TJ, Rodrigues FA, Neumaier N, Marcelino-Guimarães FC, Farias JRB, Oliveira MCN, Borém A, Oliveira ACB, Emygdio BM, Nepomuceno AL (2014) Reference genes for quantitative real-time polymerase chain reaction studies in soybean plants under hypoxic conditions. Genet Mol Res 13:860–871

    Article  CAS  PubMed  Google Scholar 

  • Pfaff MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. doi:10.1093/nar/29.9.e45

    Article  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed Central  PubMed  Google Scholar 

  • Rahman SASA, Mohamed Z, Othman RY, Swennen R, Panis B, Waele D, Remy S, Carpentier SC (2010) In plant PCR-based detection of early infection of plant-parasitic nematodes in the roots: a step towards the understanding of infection and plant defence. Eur J Plant Pathol 128:343–351

    Article  Google Scholar 

  • Rebouças EL, Costa JJN, Passos MJ, Passos JRS, van den Hurk R, Silva JRV (2013) Real time PCR and importance of housekeepings genes for normalization and quantification of mRNA expression in different tissues. Braz Arch Biol Technol 56:143–154

    Article  Google Scholar 

  • Roychowdhury D, Majumder A, Jha S (2013) Agrobacterium rhizogenes-mediated transformation in medicinal plants: prospects and challenges. In: Chandra S, Lata H, Varma A (eds) Biotechnology for medicinal plants. Springer, Heidelberg. doi:10.1007/978-3-642-29974-2

    Google Scholar 

  • Savka MA, Ravillion B, Noel GR, Farrand SK (1990) Induction of hairy root on cultivated soybean genotypes and their use to propagate the soybean cyst nematode. Phytopathology 80:503–508

    Article  Google Scholar 

  • Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW (2000) Quantitative reverse transcription-polymerase chain reaction to study mRNA Decay: comparison of endpoint and real-time methods. Anal Biochem 285:194–204. doi:10.1006/abio.2000.4753

    Article  CAS  PubMed  Google Scholar 

  • Sirover MA (1999) New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta Protein Struct Mol Enzymol 1432:159–184. doi:10.1016/S0167-4838(99)00119-3

    Article  CAS  Google Scholar 

  • Stolf-Moreira R, Lemos EGM, Abdelnoor RV, Beneventi MA, Rolla AAP, Pereira SS, Oliveira MCN, Nepomuceno AL, Marcelino-Guimarães FC (2011) Identification of reference genes for expression analysis by real-time quantitative PCR in drought-stressed soybean. Pesquisa Agropecuária Brasileira 46:58–65

    Article  Google Scholar 

  • Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. Biotechniques 29:332–337

    CAS  PubMed  Google Scholar 

  • Thellin O, Zorzi W, Lakaye B, Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75:291–295. doi:10.1016/S0168-1656(99)00163-7

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12

    Article  Google Scholar 

  • Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. Cell Dev Biol Plant 43:383–403. doi:10.1007/s11627-007-9096-8

    Article  CAS  Google Scholar 

  • Venkatachalam L, Lokesh V, Bhagyalakshmi N (2011) A rare event of Agrobacterium rhizogenes-assisted genetic transformation of ‘silk’ banana (genotype-AAB). J Microbial Biochem Technol 03:13–17. doi:10.4172/1948-5948.1000043

    Article  CAS  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J Cell Mol Biol 33:949–956

    Article  CAS  Google Scholar 

  • Weber RLM, Bodanese-Zanettini MH (2011) Induction of transgenic hairy root in soybean genotypes by Agrobacterium rhizogenes-mediated transformation. Pesquisa Agropecuária Brasileira 46:1070–1075

    Google Scholar 

  • Wilmink A, Dons JJM (1993) Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol Biol Rep 11:165–185. doi:10.1007/BF02670474

    Article  CAS  Google Scholar 

  • Zheng L, Roeder RG, Luo Y (2003) S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114:255–266. doi:10.1016/S0092-8674(03)00552-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all our colleagues from Plant Biotechnology Laboratory of EMBRAPA Soybean. This study was supported by EMBRAPA (Govt. of Brazil). Approved for publication by the Editorial Board of Embrapa Soja as manuscript 09/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. Marcelino-Guimarães.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by K. Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1005 kb)

Supplementary material 2 (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuma, K.M., Lopes-Caitar, V.S., Romero, C.C.T. et al. A high efficient protocol for soybean root transformation by Agrobacterium rhizogenes and most stable reference genes for RT-qPCR analysis. Plant Cell Rep 34, 1987–2000 (2015). https://doi.org/10.1007/s00299-015-1845-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1845-2

Keywords

Navigation