Skip to main content
Log in

Population structure and association mapping of yield contributing agronomic traits in foxtail millet

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Association analyses accounting for population structure and relative kinship identified eight SSR markers ( p < 0.01) showing significant association ( R 2 = 18 %) with nine agronomic traits in foxtail millet.

Abstract

Association mapping is an efficient tool for identifying genes regulating complex traits. Although association mapping using genomic simple sequence repeat (SSR) markers has been successfully demonstrated in many agronomically important crops, very few reports are available on marker-trait association analysis in foxtail millet. In the present study, 184 foxtail millet accessions from diverse geographical locations were genotyped using 50 SSR markers representing the nine chromosomes of foxtail millet. The genetic diversity within these accessions was examined using a genetic distance-based and a general model-based clustering method. The model-based analysis using 50 SSR markers identified an underlying population structure comprising five sub-populations which corresponded well with distance-based groupings. The phenotyping of plants was carried out in the field for three consecutive years for 20 yield contributing agronomic traits. The linkage disequilibrium analysis considering population structure and relative kinship identified eight SSR markers (p < 0.01) on different chromosomes showing significant association (R 2 = 18 %) with nine agronomic traits. Four of these markers were associated with multiple traits. The integration of genetic and physical map information of eight SSR markers with their functional annotation revealed strong association of two markers encoding for phospholipid acyltransferase and ubiquitin carboxyl-terminal hydrolase located on the same chromosome (5) with flag leaf width and grain yield, respectively. Our findings on association mapping is the first report on Indian foxtail millet germplasm and this could be effectively applied in foxtail millet breeding to further uncover marker-trait associations with a large number of markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Austin DF (2006) Foxtail millets (Setaria: Poaceae)—abandoned food in two hemispheres. Econ Bot 60:143–158

    Article  Google Scholar 

  • Barro-Kondombo C, Sagnard F, Chantereau J, Deu M, Vom BK, Durand P, Goze E, Zongo JD (2010) Genetic structure among sorghum landraces as revealed by morphological variation and microsatellites markers in three agro climatic regions of Burkina Faso. Theor Appl Genet 120:1511–1523

    Article  CAS  PubMed  Google Scholar 

  • Barton L, Newsome SD, Chen FH, Wang H, Guilderson TP, Bettinger RL (2009) Agricultural origins and the isotopic identity of domestication in northern China. Proc Natl Acad Sci USA 106:5523–5528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57:289–300

    Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotech 30:555–561

    Article  CAS  Google Scholar 

  • Bohn M, Utz HF, Melchinger AE (1999) Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci 39:228–237

    Article  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells MS (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed Central  PubMed  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J et al (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dekker J (2003) Evolutionary biology of the foxtail (Setaria) species-group. In: Inderjit K (ed) Principles and practices in weed management: weed biology and management. Kluwer Academic Publishers, The Netherlands, pp 65–114

    Google Scholar 

  • Diao XM (2011) Current status of foxtail millet production in China and future development directions. The industrial production and development system of foxtail millet in china. Chinese agricultural science and technology press, Beijing, pp 20–30

    Google Scholar 

  • Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA (2004) Genetic control of branching in foxtail millet. Proc Natl Acad Sci USA 101:9045–9050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA (2005) The genetic basis for inflorescence variation between foxtail and green millet (Poaceae). Genetics 169:1659–1672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Prithchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo J, Liu Y, Wang Y, Chen J, Li Y, Huang H, Qiu L, Wang Y (2012) Population structure of the wild soybean (Glycine soja) in China: implications from microsatellite analyses. Annals Bot 110:777–785

    Article  CAS  Google Scholar 

  • Gupta S, Kumari K, Sahu PP, Vidapu S, Prasad M (2012) Sequence-based novel genomic microsatellite markers for robust genotyping purposes in foxtail millet [Setaria italica (L.) P. Beauv.]. Plant Cell Rep 31:323–337

    Article  CAS  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol 2:618–620

    Article  Google Scholar 

  • Hirano R, Naito K, Fukunaga K, Watanabe KN, Ohsawa R, Kawase M (2011) Genetic structure of landraces in foxtail millet (Setaria italica (L.) P. Beauv.) revealed with transposon display and interpretation to crop evolution of foxtail millet. Genome 54:498–506

    Article  CAS  PubMed  Google Scholar 

  • Hokanson SC, Szewc-Mcfadden AK, Lamboy WF, Mcferson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus domestica borkh. core subset collection. Theor Appl Genet 67:671–683

    Article  Google Scholar 

  • Hunt HV, Linden MV, Liu X, Motuzaite-Matuzeviciute G, Colledge S et al (2008) Millets across Eurasia: chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World. Veg History Archaeobotany 17:S5–S18

    Article  Google Scholar 

  • Jia X, Zhang Z, Liu Y, Zhang C, Shi Y, Song Y, Wang T, Li Y (2009) Development and genetic mapping of SSR markers in foxtail millet [Setaria italica (L.) P. Beauv.]. Theor Appl Genet 118:821–829

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K, Lu H et al (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45:957–961

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Lu Y, Xiao P, Sun M, Corke H, Bao J (2010) Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theor Appl Genet 121:475–487

    Article  PubMed  Google Scholar 

  • Kujur A, Bajaj D, Saxena MS, Tripathi S, Upadhyaya HD, Gowda CL, Singh S, Jain M, Tyagi AK, Parida SK (2013) Functionally relevant microsatellite markers from chickpea transcription factor genes for efficient genotyping applications and trait association mapping. DNA Res 20:355–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumari K, Muthamilarasan M, Misra G, Gupta S, Subramanian A, Parida SK, Chattopadhyay D, Prasad M (2013) Development of eSSR-markers in Setaria italica and their applicability in studying genetic diversity, cross-transferability and comparative mapping in millet and non-millet species. PLoS ONE 8:e67742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lata C, Prasad M (2013) Setaria genome sequencing: an overview. J Plant Biochem Biotech 22:257–260

    Article  CAS  Google Scholar 

  • Lata C, Jha S, Dixit V, Sreenivasulu N, Prasad M (2011) Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars [Setaria italica (L.)]. Protoplasma 248:817–828

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Gupta S, Prasad M (2013) Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotech 33:328–343

    Article  Google Scholar 

  • Li Y, Wu S (1996) Traditional maintenance and multiplication of foxtail millet (Setaria italica (L.) P. Beauv.) landraces in China. Euphytica 87:33–38

    Article  Google Scholar 

  • Lin HS, Chiang CY, Chang SB, Kuoh CS (2011) Development of simple sequence repeats (SSR) markers in Setaria italica (Poaceae) and cross-amplification in related species. Int J Mol Sci 12:7835–7845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu L, Wang L, Yao J, Zheng J, Zhao C (2010) Association mapping of six agronomic traits on chromosome 4A of wheat (Triticum aestivum L.). Mol Plant. doi:10.5376/mpb.2010.01.0005

    PubMed Central  Google Scholar 

  • Liu Z, Bai G, Zhang D, Zhu C, Xia X, Cheng R, Shi Z (2011) Genetic diversity and population structure of elite foxtail millet [Setaria italica (L.) P. Beauv.] germplasm in China. Crop Sci 51:1655–1663

    Article  Google Scholar 

  • Lu H, Zhang J, Liu KB, Wu N, Li Y et al (2009) Earliest domestication of common millet (Panicum miliaceum) in east Asia extended to 10,000 years ago. Proc Natl Acad Sci USA 106:7367–7372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–289

    Article  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Demontis A et al (2011) Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot 62:409–438

    Article  CAS  PubMed  Google Scholar 

  • Mather DE, Hayes PM, Chalmers KJ, Eglinton JK, Matus I, Richardson KL, Von-Zitzewitz J, Marquez- Cedillo L, Hearnden P, Pal N (2004) Use of SSR marker data to study linkage disequilibrium and population structure in Hordeum vulgare: prospects for association mapping in barley. In: Spunar J, Janikova J (eds) Proceedings from the 9th international barley genetics symposium. Czech J Genet Plant Breed, Czech Republic, pp 302–307

  • Mauro-Herrera M, Wang X, Barbier H, Brutnell TP, Devos KM, Doust AN (2013) Genetic control and comparative genomic analysis of flowering time in Setaria (Poaceae). G3 3:283–295

    Article  PubMed Central  PubMed  Google Scholar 

  • Moon YK, Hong JP, Cho YC, Yang SJ, An G, Kim WT (2009) Structure and expression of OsUBP6, an ubiquitin-specific protease 6 homolog in rice (Oryza sativa L.). Mol Cells 28:463–472

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Suresh BV, Pandey G, Kumari K, Parida SK, Prasad M (2013) Development of 5123 Intron length polymorphic (ILP) markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Res. doi:10.1093/dnares/dst039

  • Pandey G, Misra G, Kumari K, Gupta S, Parida SK, Chattopadhyay D, Prasad M (2013) Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Res 20:197–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor Appl Genet 97:1248–1255

    Article  CAS  Google Scholar 

  • Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592

    CAS  Google Scholar 

  • Pritchard JK, Przeworski M (2001) Linkage disequilibrium in humans models data. Am J Human Genet 69:1–14

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Razafinarivo NJ, Guyot R, Davis AP, Couturon E, Hamon S, Crouzillat D, Rigoreau M, Dubreuil-Tranchant C, Poncet V, De-Kochko A et al (2013) Genetic structure and diversity of coffee (Coffea) across Africa and the Indian Ocean islands revealed using microsatellites. Annals Bot 111:229–248

    Article  CAS  Google Scholar 

  • Reimer SO, Pozniak CJ, Clarke FR, Clarke JM, Somers DJ, Knox RE, Singh AK (2008) Association mapping of yellow pigment in an elite collection of durum wheat cultivars and breeding lines. Genome 51:1016–1025

    Article  CAS  PubMed  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rogers JS (1972) Measures of genetic similarity and genetic distance. Studies in genetics VII. University Texas Publication, Texas, pp 145–153

    Google Scholar 

  • Saghai-Maroof MA, Biyaschev RM, Yang GP, Zhang Q, Allard RW (1994) Extaordinary polymorphism microsatellite DNA in barley: species diversity, chromosomal location and population dynamics. Proc Natl Acad Sci USA 91:5466–5470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of and numerical classification. Freeman, San Francisco, p 573

    Google Scholar 

  • Suresh BV, Muthamilarasan M, Misra G, Prasad M (2013) FmMDb: a versatile database of foxtail millet markers for millets and bioenergy grasses research. PLoS ONE 8:e71418

    Article  Google Scholar 

  • Tsuruta SI, Hashiguchi M, Ebina M, Matsuo T, Yamamoto T, Kobayashi M, Takahara M, Nakagawa H, Akashi R (2005) Development and characterization of simple sequence repeat markers in Zoysia japonica Steud. Grassland Sci 51:249–257

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Wang YH, Sharma S, Singh S, Hasenstein KH (2012) SSR markers linked to kernel weight and tiller number in sorghum identified by association mapping. Euphytica 187:401–410

    Article  CAS  Google Scholar 

  • van Oosterhout C, Hutchinson W, Wills D, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol 4:535–538

    Article  Google Scholar 

  • Vavilov NI (1926) Studies on the origin of cultivated plants. Bull Appl Bot Plant Breed 16:139–248

    Google Scholar 

  • Wang C, Jia G, Zhi H, Niu Z, Chai Y, Li W, Wang Y, Li H, Lu P, Zhao B, Diao X (2012) Genetic diversity and population structure of chinese foxtail millet [Setaria italica (L.) Beauv.] landraces. G3 Genes Genomics Genetics 2:769–777

    CAS  Google Scholar 

  • Weir BS, Hill WG (2002) Estimating F-statistics. Ann Rev Genetics 36:721–750

    Article  CAS  Google Scholar 

  • Wong YC, Ho CL, Kulaveerasingam H, Zain AM, Napis S, Zaman FQ (2007) Analyses of expressed sequence tags (ESTs) from panicles of the indica rice cultivar MR84 during grain filling stages and molecular characterisation of ADP-glucose pyrophosphorylase small subunit. Asia Pacific J Mol Biol Biotech 15:81–90

    Google Scholar 

  • Yan WG, Li Y, Agrama HA, Luo D, Gao F, Lu X, Ren G (2009) Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.). Mol Breed 24:277–292

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotech 17:1–6

    Article  Google Scholar 

  • Zhang D, Zhang H, Wang M, Sun J, Qi Y, Wang F, Wei X, Han L, Wang X, Li Z (2009a) Genetic structure and differentiation of Oryza sativa L. in China revealed by microsatellites. Theor Appl Genet 119:1105–1117

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Fan J, Taylor DC, Ohlrogge JB (2009b) DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 21:3885–3901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotech 30:549–554

    Article  CAS  Google Scholar 

  • Zondervan KT, Cardon LR (2004) The complex interplay among factors that influence allelic association. Nat Rev Genetics 5:89–100

    Article  CAS  Google Scholar 

  • Zoric M, Dejan D, Kobiljski B, Quarrie S, Barnes J (2012) Population structure in a wheat core collection and genomic loci associated with yield under contrasting environments. Genetica 140:259–275

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due to the Director, National Institute of Plant Genome Research (NIPGR), New Delhi, India for providing facilities. This work area was supported by the core grant of NIPGR. Dr. Sarika Gupta and Mr. Mehanathan Muthamilarasan acknowledge the award of DST-Young Scientist and Junior Research Fellowship from the Dept. of Science and Technology (DST) and University Grants Commission, New Delhi, respectively. We are also thankful to the National Bureau of Plant Genetic Resources, New Delhi/Hyderabad/Akola, India for providing the seed materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Prasad.

Additional information

Communicated by A. Dhingra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 266 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Kumari, K., Muthamilarasan, M. et al. Population structure and association mapping of yield contributing agronomic traits in foxtail millet. Plant Cell Rep 33, 881–893 (2014). https://doi.org/10.1007/s00299-014-1564-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1564-0

Keywords

Navigation