Skip to main content
Log in

What's so special about cholesterol?

  • Published:
Lipids

Abstract

Cholesterol (or other higher sterols such as ergosterol and phytosterols) is universally present in large amounts (20–40 mol%) in eukaryotic plasma membranes, whereas it is universally absent in the membranes of prokaryotes. Cholesterol has a unique ability to increase lipid order in fluid membranes while maintaining fluidity and diffusion rates. Cholesterol imparts low permeability barriers to lipid membranes and provides for large mechanical coherence. A short topical review is given of these special properties of cholesterol in relation to the structure of membranes, with results drawn from a variety of theoretical and experimental studies. Particular focus is put on cholesterol's ability to promote a special membrane phase, the liquidordered phase, which is unique for cholesterol (and other higher sterols like ergosterol) and absent in membranes containing the cholesterol precursor lanosterol. Cholesterol's role in the formation of special membrane domains and so-called rafts is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

7DHC:

7-dihydrocholesterol

DMPC:

1,2-dimyristoyl phosphocholine

DOPC:

1,2-dioleoyl phosphocholine

DPPC:

1,2-palmitoyl-3-phosphocholine

GPL:

glycerophospholipid

PI:

phosphoinositol

POPC:

phosphocholine

PPet-PC:

1-palmitoyl-2-petroselinoyl-3-phosphocholine

SC:

Saccharomyces cerevisiae

SLOS:

Smith-Lemli-Opitz syndrome

References

  1. Mouritsen, O.G. (2005) Life—As a Matter of Fat. The Emerging Science of Lipidomics, Springer-Verlag, Heidelberg.

    Google Scholar 

  2. Mouritsen, O.G., and Andersen, O.S. (eds.) (1998) In Search of a New Biomembrane Model, Biol. Skr. Dan. Vid. Selsk. 49, pp. 1–214.

  3. Kinnunen, P.K.J. (1991) On the Principles of Functional Ordering in Biological Membranes, Chem. Phys. Lipids 57, 375–399.

    Article  PubMed  CAS  Google Scholar 

  4. Jensen, M.Ø., and Mouritsen, O.G. (2004) Lipids do influence protein function—The hydrophobic matching hypothesis revisited, Biochim. Biophys. Acta 1666, 205–226.

    Article  PubMed  CAS  Google Scholar 

  5. Peet, M., Glen, I., and Horrobin, D.F. (eds.) (1999) Phospholipid Spectrum Disorder in Psychiatry, Marius Press, Carnforth, United Kingdom.

    Google Scholar 

  6. Crawford, M., and Marsh, D. (1989) The Driving Force, Harper & Row, New York.

    Google Scholar 

  7. Hilgeman, D.W. (2003) Getting ready for the decade of the lipids, Annu. Rev. Physiol. 65, 697–700.

    Article  Google Scholar 

  8. Kurzchalia, T.V., and Ward, S. (2003) Why do worms need cholesterol? Nature Cell. Biol. 5, 684–688.

    Article  PubMed  CAS  Google Scholar 

  9. Bloom, M., and Mouritsen, O.G. (1995) The evolution of membranes, in Handbook of Biological Physics Vol. I: Structure and Dynamics of Membranes (Lipowsky, R., and Sackmann, E., eds.), pp. 65–95 Elsevier Science B.V., Amsterdam.

    Google Scholar 

  10. Cavalier-Smith, T. (1987) The origin of eukaryote and archaebacterial cells, Ann. NY Acad. Sci. 503, 17–54.

    Article  PubMed  CAS  Google Scholar 

  11. Bloch, K. (1983) Sterol structure and membrane function, CRC Crit. Rev. 14, 47–92.

    Article  CAS  Google Scholar 

  12. Bloch, K. (1994) Blondes in Venetian Paintings, the Nine-Banded Armadillo, and Other Essays in Biochemistry, Yale University Press, New Haven, MA.

    Google Scholar 

  13. Miao, L., Nielsen, M., Thewalt, J., Ipsen, J.H., Bloom, M., Zuckermann, M.J., and Mouritsen, O.G. (2002) From lanosterol to cholesterol: Structural evolution and differential effects on lipid bilayers, Biophys. J. 82, 1429–1444.

    Article  PubMed  CAS  Google Scholar 

  14. Ipsen, J.H., Mouritsen, O.G., Karlström, G., Wennerström, H., and Zuckermann, M.J. (1987) Phase equilibria in the lecithin-cholesterol system, Biochim. Biophys. Acta 905, 162–172.

    Article  PubMed  CAS  Google Scholar 

  15. Vist, M., and Davis, J.H. (1990) Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine. 2H nuclear magnetic resonance and differential scanning calorimetry, Biochemistry 29, 451–464.

    Article  PubMed  CAS  Google Scholar 

  16. Hsueh, Y.-W., Gilbert, K., Trandum, C., Zuckermann, M.J., and Thewalt, J. (2004) The effect of ergosterol on DPPC bilayers: A deuterium NMR and calorimetric study. Biophys. J., in press.

  17. Mouritsen, O.G., and Jørgensen, K. (1994) Dynamical order and disorder in lipid bilayers, Chem. Phys. Lipids 73, 3–26.

    Article  PubMed  CAS  Google Scholar 

  18. Bergelson, L.O., Gawrisch, K., Feretti, J.A., and Blumenthal, R. (eds.) (1995) Domain organization in biological membranes, Mol. Membr. Biol. 12, 1–162.

    Google Scholar 

  19. Mouritsen, O.G., and Jørgensen, K. (1997) Small-scale lipidmembrane structure: Simulation vs. experiment, Curr. Opin. Struct. Biol. 7, 518–527.

    Article  PubMed  CAS  Google Scholar 

  20. Simons, K., and Ikonen, E. (1997) Functional rafts in cell membranes, Nature 387, 569–572.

    Article  PubMed  CAS  Google Scholar 

  21. Edidin, M. (2003) The state of lipid rafts: From model membranes to cells, Annu. Rev. Biophys. Biomol. Struct. 32, 257–283.

    Article  PubMed  CAS  Google Scholar 

  22. McMullen, T.P.W., Lewis, R.N.A.H., and McElhaney, R.N. (2004) Cholesterol-phospholipid interactions, the liquid-ordered phase in model and biological membranes, Curr. Opin. Colloid Interface. Sci. 8, 459–468.

    Article  CAS  Google Scholar 

  23. Maxfield, F.R. (2002) Plasma membrane microdomains, Curr. Opin. Cell Biol. 14, 483–487.

    Article  PubMed  CAS  Google Scholar 

  24. Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A., and Jacobson, K. (2002) The relationship of lipid rafts to transient confinement zones detected by single particle tracking, Biophys. J. 82, 274–284.

    Article  PubMed  CAS  Google Scholar 

  25. Xu, X., and London, E. (2000) The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation, Biochemistry 39, 843–849.

    Article  PubMed  CAS  Google Scholar 

  26. Dietrich, C., Bagatolli, L.A., Volovyk, Z., Thompson, N.L., Levi, M., Jacobson, K., and Gratton, E. (2001) Lipid rafts reconstituted in model membranes, Biophys. J. 80, 1417–1428.

    Article  PubMed  CAS  Google Scholar 

  27. Milhiet, P.E., Giocondi, M.-C., and Le Grimmelec, C. (2002) Cholesterol is not crucial for the existence of microdomains in kidney brush-border membrane models, J. Biol. Chem. 277 875–878.

    Article  PubMed  CAS  Google Scholar 

  28. Silvius, J.R. (2003) Role of cholesterol in lipid raft formation: Lessons from lipid model systems, Biochim. Biophys. Acta 1610, 174–83.

    Article  PubMed  CAS  Google Scholar 

  29. Rinia, H.A., Snel, M.M.E., van der Eerden, J.P.J.M., and de Kruijff, B. (2001) Visualizing detergent resistant domains in model membranes with Atomic Force Microscopy, FEBS Lett. 501, 92–96.

    Article  PubMed  CAS  Google Scholar 

  30. Bernardino de la Serna, J., Perez-Gil, J., Simonsen, A.C., and Bagatolli, L.A. (2004) Cholesterol rules: Direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures, J. Biol. Chem. 279, 40715–40722.

    Article  PubMed  Google Scholar 

  31. McConnell, H.M., and Radhakrishnan, A. (2003) Condensed complexes of cholesterol and phospholipids, Biochim. Biophys. Acta 1610, 159–173.

    Article  PubMed  CAS  Google Scholar 

  32. Yeagle, P.L. (ed.) (1988) Biology of Cholesterol, CRC Press, Boca Raton, Florida.

    Google Scholar 

  33. Finegold, L.X. (ed.) (1993) Cholesterol and Membrane Models, CRC Press, Boca Raton, Florida.

    Google Scholar 

  34. Vance, D.E., and Van den Bosch, H. (eds.) (2000) Cholesterol in the year 2000, Biochim. Biophys. Acta 152, 1–373 (2000).

    Google Scholar 

  35. Corvera, E., Mouritsen, O.G., Singer, M.A., and Zuckermann, M.J. (1992) The permeability and the effect of acyl-chain length for phospholipid bilayers containing cholesterol: Theory and experiments, Biochim. Biophys. Acta 1107, 261–270.

    Article  PubMed  CAS  Google Scholar 

  36. Disalvo, A., and Simon, S.A (eds.) (1995) Permeability and Stability of Lipid Bilayers, CRC Press, Boca Raton, FL.

    Google Scholar 

  37. Trandum, C., Westh, P., Jørgensen, K., and Mouritsen, O.G. (2000) A thermodynamic study of the effects of cholesterol on the interaction between liposomes and ethanol, Biophys. J. 78, 2486–2492.

    Article  PubMed  CAS  Google Scholar 

  38. Lemmich, J., Hønger, T., Mortensen, K., Ipsen, J.H., Bauer, R., and Mouritsen, O.G. (1996) Solutes in small amounts provide for lipid-bilayer softness: Cholesterol, short-chain lipids, and bola lipids, Eur. Biophys. J. 25, 61–65.

    Article  CAS  Google Scholar 

  39. Henriksen, J.R., Rowat, A.C., and Ipsen, J.H. (2004) Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity, Eur. Biophys. J. 33, 732–741.

    Article  PubMed  CAS  Google Scholar 

  40. Vattulainen, I., and Mouritsen, O.G. (2004) Diffusion in membranes, in Diffusion in Condensed Matter (Kärger, J., Heitjans, P., and Haberlandt, R., eds.), Springer-Verlag, Berlin.

    Google Scholar 

  41. Polson, J.M., Vattulainen, I., Zhu, H., and Zuckermann, M.J. (2001) Simulation study of lateral diffusion in lipid-sterol bilayer mixtures, Eur. Phys. J. E. Soft Matter 5, 485–497.

    Article  CAS  Google Scholar 

  42. Almeida, P.F., Vaz, W.L., and Thompson, T.E. (1992) Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: A free volume analysis, Biochemistry 31, 6739–6747.

    Article  PubMed  CAS  Google Scholar 

  43. Cantor, R.S. (1999) The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria, Chem. Phys. Lipids 101, 45–56.

    Article  PubMed  CAS  Google Scholar 

  44. Dumas, F., Lebrun, M.C., and Tocanne, J.F. (1999) Is the protein/lipid hydrophobic matching principle relevant to membrane organization and functions, FEBS Lett. 458, 271–277.

    Article  PubMed  CAS  Google Scholar 

  45. Lee, A.G. (2003) Lipid-protein interactions in biological membranes: A structural perspective, Biochim. Biophys. Acta 1612, 1–40.

    Article  PubMed  CAS  Google Scholar 

  46. Cornelius, F. (2001) Modulation of Na,K-ATPase and Na-ATPase activity by phospholipids and cholesterol. I. Steady-state kinetics, Biochemistry 40, 8842–8851.

    Article  PubMed  CAS  Google Scholar 

  47. Munro, S. (1998) Localization of proteins to the Golgi apparatus, Trends Cell Biol. 8, 11–15.

    Article  PubMed  CAS  Google Scholar 

  48. Mitra, K., Ubarretxena-Belandia, I., Taguchi, T., Warren, G., and Engelman, D.M. (2004) Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather that cholesterol, Proc. Natl. Acad. Sci. USA 101, 4083–4088.

    Article  PubMed  CAS  Google Scholar 

  49. Anderson, R.G.W., and Jacobson, K. (2002) A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains, Science 296, 1821–1825.

    Article  PubMed  CAS  Google Scholar 

  50. Porter, F.D. (2000) RSH/Smith-Lemli-Opitz syndrome: a multiple anomaly/mental retardation syndrome due to an inborn error of cholesterol biosynthesis, Mol. Genet. Metab. 71, 163–174 (2000)

    Article  PubMed  CAS  Google Scholar 

  51. Steiner, R.D. (2004) Sterolemia, http://www.emedicine.com/ped/topic2110.htm.

  52. Low, C., Rodriguez, R.J., and Parks, L.W. (1985) Modulation of Yeast Plasma Membrane Composition of a Yeast Auxotroph as a Function of Exogenous Sterol, Arch. Biochem. Biophys. 260, 530–538.

    Article  Google Scholar 

  53. Schneiter, R., Brügger, B., Sandhoff, R., Zellnig, G., Leber, A., Lampl, A., Athenstaedt, K., Hrastnik, C., Eder, S., Daum, G., et al. (1999) Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane, J. Cell Biol. 146, 741–754.

    Article  PubMed  CAS  Google Scholar 

  54. Patton, J.L., and Lester, R.L. (1991) The phosphoinositol sphingolipids of Saccharomyces cerevisiae are highly localized in the plasma membrane, J. Bacteriol. 173, 3101–3108.

    PubMed  CAS  Google Scholar 

  55. Zinser, E., Sperka-Gottlieb, C.D., Fasch, E.V., Kohlwein, S.D., Paltauf, F., and Daum, G. (1991) Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae, J. Bacteriol. 173, 2026–2034.

    PubMed  CAS  Google Scholar 

  56. Zinser, E., Paltauf, F., and Daum, G. (1993) Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism, J. Bacteriol. 175, 2853–2858.

    PubMed  CAS  Google Scholar 

  57. Larsson, C., and Møller, I.M. (eds.) (1990) The Plant Plasma Membrane; Structure Function and Molecular Biology, pp. 6–9, Springer Verlag, Heidelberg.

    Google Scholar 

  58. Bagnat, M.S., Shevchenko, A., and Simons, K. (2000) Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast, Proc. Natl. Acad. Sci. USA 97, 3254–3259.

    Article  PubMed  CAS  Google Scholar 

  59. Urbina, J.A., Pekerar, S., Le, H.B., Patterson, J., Montez, B., and Oldfield, E. (1995) Molecular order and dynamics of phosphatidylcholine bilayer membranes in the presence of cholesterol, ergosterol and lanosterol: A comparative study using 2H-, 13C- and 31P-NMR spectroscopy, Biochim. Biophys. Acta. 1238, 163–176.

    Article  PubMed  Google Scholar 

  60. Xu, X., Bittman, R., Duportail, G., Heissler, D., Vilcheze, C., and London, E. (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide, J. Biol. Chem. 276, 33540–33546.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole G. Mouritsen.

About this article

Cite this article

Mouritsen, O.G., Zuckermann, M.J. What's so special about cholesterol?. Lipids 39, 1101–1113 (2004). https://doi.org/10.1007/s11745-004-1336-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-004-1336-x

Keywords

Navigation