Skip to main content

Advertisement

Log in

Rootstock scion somatogenetic interactions in perennial composite plants

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The ancient plant production practice of grafting which instantly imparts new physiological properties to the desirable scion still remains shrouded in mystery. Yet, grafting remains a widely used technique in the production of several horticultural species. In a composite grafted plant, rootstocks control many aspects of scion growth and physiology including yield and quality attributes as well as biotic and abiotic stress tolerance. Broadly, physical, physiological, biochemical and molecular mechanisms have been reviewed to develop an integrated understanding of this enigmatic process that challenges existing genetic paradigms. This review summarizes the reported mechanisms underlying some of the economically important traits and identifies several key points to consider when conducting rootstock scion interaction experiments. Study of the somatogenetic interactions between rootstock and scion is a field that is ripe for discovery and vast improvements in the coming decade. Further, utilization of rootstocks based on a better understanding of the somatogenetic interactions is highly relevant in the current agricultural environment where there is a need for sustainable production practices. Rootstocks may offer a non-transgenic approach to rapidly respond to the changing environment and expand agricultural production of annual and perennial crops where grafting is feasible in order to meet the global food, fiber and fuel demands of the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agbaria H, Heuer B, Zieslin N (1998) Rootstock-imposed alterations in nitrate reductase and glutamine synthetase activities in leaves of rose plants. Biol Plantarum 41(1):85–91

    Article  CAS  Google Scholar 

  • Almansa MS, Hernandez JA, Jimenez A, Botella MA, Sevilla F (2002) Effect of salt stress on the superoxide dismutase activity in leaves of Citrus limonum in different rootstock–scion combinations. Biol Plantarum 45(4):545–549

    Article  CAS  Google Scholar 

  • Aloni B, Cohen R, Karni L, Aktas H, Edelstein M (2010) Hormonal signaling in rootstock–scion interactions. Sci Hortic-Amsterdam 127(2):119–126. doi:10.1016/j.scienta.2010.09.003

    Article  CAS  Google Scholar 

  • Atkinson CJ, Else MA, Taylor L, Dover CJ (2003) Root and stem hydraulic conductivity as determinants of growth potential in grafted trees of apple (Malus pumila Mill.). J Exp Bot 54(385):1221–1229. doi:10.1093/Jxb/Erg132

    Article  PubMed  CAS  Google Scholar 

  • Basile B, Marsal J, DeJong TM (2003) Daily shoot extension growth of peach trees growing on rootstocks that reduce scion growth is related to daily dynamics of stem water potential. Tree Physiol 23(10):695–704

    Article  PubMed  Google Scholar 

  • Bassal MA (2009) Growth, yield and fruit quality of ‘Marisol’ clementine grown on four rootstocks in Egypt. Sci Hortic-Amsterdam 119(2):132–137. doi:10.1016/j.scienta.2008.07.020

    Article  Google Scholar 

  • Bertelsen MG, Callesen O (2001) Performance of ‘Clara frijs’ pear on seven rootstocks. Acta Hort (ISHS) 557:145–1510

    Google Scholar 

  • Cardinal ÁBB, PS Gonçalves, Martins ALM (2007) Stock–scion interactions on growth and rubber yield of Hevea brasiliensis. Sci Agric 64:235–240

    Article  Google Scholar 

  • Clearwater MJ, Blattmann P, Luo Z, Lowe RG (2007) Control of scion vigour by kiwifruit rootstocks is correlated with spring root pressure phenology. J Exp Bot 58(7):1741–1751. doi:10.1093/Jxb/Erm029

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Niu Y, Li W, Zhang D (2008) Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. J Exp Bot 59(6):1295–1304. doi:10.1093/jxb/ern035

    Article  PubMed  CAS  Google Scholar 

  • Edelstein M, Cohen R, Burger Y, Shriber S, Pivonia S, Shtienberg D (1999) Integrated management of sudden wilt in melons, caused by Monosporascus cannonballus, using grafting and reduced rates of methyl bromide. Plant Dis 83(12):1142–1145. doi:10.1094/pdis.1999.83.12.1142

    Article  Google Scholar 

  • Epstein L, Beede R, Kaur S, Ferguson L (2004) Rootstock effects on pistachio trees grown in Verticillium dahliae-infested soil. Phytopathology 94(4):388–395

    Article  PubMed  CAS  Google Scholar 

  • Fallahi E, Chun IJ, Neilsen GH, Colt WM (2001) Effects of three rootstocks on photosynthesis, leaf mineral nutrition, and vegetative growth of “BC-2 Fuji” apple trees. J Plant Nutr 24(6):827–834

    Article  CAS  Google Scholar 

  • Flaishman M, Loginovsky K, Golobowich S, Lev-Yadun S (2008) Arabidopsis thaliana as a Model System for Graft Union Development in Homografts and Heterografts. J Plant Growth Regul 27(3):231–239. doi:10.1007/s00344-008-9050-y

    Article  CAS  Google Scholar 

  • Gasco A, Nardini A, Raimondo E, Gortan E, Motisi A, Gullo MA, Salleo S (2007) Hydraulic kinetics of the graft union in different Olea europaea L. scion/rootstock combinations. Environ Exp Bot 60(2):245–250. doi:10.1016/j.envexpbot.2006.10.011

    Article  Google Scholar 

  • Gijon MD, Gimenez C, Perez-Lopez D, Guerrero J, Couceiro JF, Moriana A (2010) Rootstock influences the response of pistachio (Pistacia vera L. cv. Kerman) to water stress and rehydration. Sci Hortic Amst 125(4):666–671. doi:10.1016/j.scienta.2010.05.026

    Article  Google Scholar 

  • Golecki B, Schulz A, Carstens-Behrens U, Kollmann R (1998) Evidence for graft transmission of structural phloem proteins or their precursors in heterografts of Cucurbitaceae. Planta 206(4):630–640

    Article  CAS  Google Scholar 

  • Gonçalves B, Moutinho-Pereira J, Santos A, Silva AP, Bacelar E, Correia C, Rosa E (2006) Scion–rootstock interaction affects the physiology and fruit quality of sweet cherry. Tree Physiol 26(1):93–104. doi:10.1093/treephys/26.1.93

    Article  PubMed  Google Scholar 

  • Harada T (2010) Grafting and RNA transport via phloem tissue in horticultural plants. Sci Hortic-Amsterdam 125(4):545–550. doi:10.1016/j.scienta.2010.05.013

    Article  CAS  Google Scholar 

  • Hernández F, Pinochet J, Moreno MA, Martínez JJ, Legua P (2010) Performance of Prunus rootstocks for apricot in Mediterranean conditions. Sci Hortic-Amsterdam 124(3):354–359. doi:10.1016/j.scienta.2010.01.020

    Article  Google Scholar 

  • Jensen PJ, Rytter J, Detwiler EA, Travis JW, McNellis TW (2003) Rootstock effects on gene expression patterns in apple tree scions. Plant Mol Biol 53(4):493–511

    Article  PubMed  CAS  Google Scholar 

  • Jensen P, Makalowska I, Altman N, Fazio G, Praul C, Maximova S, Crassweller R, Travis J, McNellis T (2010) Rootstock-regulated gene expression patterns in apple tree scions. Tree Genetics Genomes 6(1):57–72. doi:10.1007/s11295-009-0228-7

    Article  Google Scholar 

  • Kamboj JS, Blake PS, Quinlan JD, Baker DA (1999a) Identification and quantitation by GC-MS of zeatin and zeatin riboside in xylem sap from rootstock and scion of grafted apple trees. Plant Growth Regul 28(3):199–205

    Article  CAS  Google Scholar 

  • Kamboj JS, Browning G, Blake PS, Quinlan JD, Baker DA (1999b) GC–MS-SIM analysis of abscisic acid and indole-3-acetic acid in shoot bark of apple rootstocks. Plant Growth Regul 28(1):21–27

    Article  CAS  Google Scholar 

  • Kanehira A, Yamada K, Iwaya T, Tsuwamoto R, Kasai A, Nakazono M, Harada T (2010) Apple phloem cells contain some mRNAs transported over long distances. Tree Genetics Genomes 6(5):635–642. doi:10.1007/s11295-010-0279-9

    Article  Google Scholar 

  • Kasai A, Bai S, Li T, Harada T (2011) Graft-transmitted siRNA signal from the root induces visual manifestation of endogenous Post-transcriptional gene silencing in the scion. Plos One 6(2):e16895. doi:10.1371/journal.pone.0016895

    Article  PubMed  CAS  Google Scholar 

  • King S, Davis A, Lamolinare B, Liu W, Levi A (2007) Grafting for disease resistance. HortScience 43(6):1673–1676

    Google Scholar 

  • Koundouras S, Tsialtas IT, Zioziou E, Nikolaou N (2008) Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. Cabernet-Sauvignon) under contrasting water status: Leaf physiological and structural responses. Agric Ecosyst Environ 128(1–2):86–96. doi:10.1016/j.agee.2008.05.006

    Article  Google Scholar 

  • Koundouras S, Hatzidimitriou E, Karamolegkou M, Dimopoulou E, Kallithraka S, Tsialtas JT, Zioziou E, Nikolaou N, Kotseridis Y (2009) Irrigation and rootstock effects on the phenolic concentration and aroma potential of Vitis vinifera L. cv. Cabernet Sauvignon Grapes. J Agric Food Chem 57(17):7805–7813. doi:10.1021/Jf901063a

    Article  PubMed  CAS  Google Scholar 

  • Li HL, Zhang H, Yu C, Ma L, Wang Y, Zhang XZ, Han ZH (2012) Possible roles of auxin and zeatin for initiating the dwarfing effect of M9 used as apple rootstock or interstock. Acta Physiol Plant 34(1):235–244. doi:10.1007/s11738-011-0822-9

    Article  CAS  Google Scholar 

  • Main G, Morris J, Striegler K (2002) Rootstock effects on Chardonel productivity, fruit, and wine composition. Am J Enol Vitic 53(1):37–40

    Google Scholar 

  • Martinez-Ballesta MC, Alcaraz-Lopez C, Muries B, Mota-Cadenas C, Carvajal M (2010) Physiological aspects of rootstock–scion interactions. Sci Hortic-Amsterdam 127(2):112–118

    Article  Google Scholar 

  • Martinez-Rodriguez MM, Estañ MT, Moyano E, Garcia-Abellan JO, Flores FB, Campos JF, Al-Azzawi MJ, Flowers TJ, Bolarín MC (2008) The effectiveness of grafting to improve salt tolerance in tomato when an ‘excluder’ genotype is used as scion. Environ Exp Bot 63(1–3):392–401. doi:10.1016/j.envexpbot.2007.12.007

    Article  CAS  Google Scholar 

  • McCollum T, Bowman K, Castle W (2002) Effects of rootstock on fruit quality and postharvest behavior of ‘Marsh’ grapefruit. Proc Fla State Hort Soc 115:44–46

    Google Scholar 

  • Mickelbart MV, Arpaia ML (2002) Rootstock influences changes in ion concentrations, growth, and photosynthesis of ‘Hass’ avocado trees in response to salinity. J Am Soc Hortic Sci 127(4):649–655

    CAS  Google Scholar 

  • Mudge K, Janick J, Scofield S, Goldschmidt EE (2009) A history of grafting. In: Janick J (ed) Horticultural reviews. John Wiley & Sons, Inc, NJ, pp 437–493. doi:10.1002/9780470593776.ch9

    Chapter  Google Scholar 

  • Nardini A, Gasco A, Raimondo F, Gortan E, Lo Gullo MA, Caruso T, Salleo S (2006) Is rootstock-induced dwarfing in olive an effect of reduced plant hydraulic efficiency? Tree Physiol 26(9):1137–1144

    Article  PubMed  Google Scholar 

  • North M, Cook N (2008) Effect of six rootstocks on ‘Forelle’ pear tree growth, production, fruit quality and leaf mineral content. Acta Hortic (ISHS) 772:97–103

    Google Scholar 

  • Okubo M, Furukawa Y, Sakuratani T (2000) Growth, flowering and leaf properties of pear cultivars grafted on two Asian pear rootstock seedlings under NaCl irrigation. Sci Hortic-Amsterdam 85(1–2):91–101

    Article  CAS  Google Scholar 

  • Olmstead MA, Lang NS, Ewers FW, Owens SA (2006a) Xylem vessel anatomy of sweet cherries grafted onto dwarfing and nondwarfing rootstocks. J Am Soc Hortic Sci 131(5):577–585

    Google Scholar 

  • Olmstead MA, Lang NS, Lang GA, Ewers FW, Owens SA (2006b) Examining the vascular pathway of sweet cherries grafted onto dwarfing rootstocks. HortScience 41(3):674–679

    Google Scholar 

  • Papadakis IE, Dimassi KN, Bosabalidis AM, Therios IN, Patakas A, Giannakoula A (2004) Effects of B excess on some physiological and anatomical parameters of ‘Navelina’ orange plants grafted on two rootstocks. Environ Exp Bot 51(3):247–257. doi:10.1016/j.envexpbot.2003.11.004

    Article  CAS  Google Scholar 

  • Prassinos C, Ko JH, Lang G, Iezzoni AF, Han KH (2009) Rootstock-induced dwarfing in cherries is caused by differential cessation of terminal meristem growth and is triggered by rootstock-specific gene regulation. Tree Physiol 29(7):927–936. doi:10.1093/treephys/tpp027

    Article  PubMed  CAS  Google Scholar 

  • Ritenour MA, Dou H, Bowman KD, Boman BJ, Stover E, Castle WS (2004) Effect of rootstock on stem-end rind breakdown and decay of fresh citrus. Horttechnology 14(3):315–319

    Google Scholar 

  • Robinson TL, Hoying SA, Andersen RL (2006) Performance of dwarfing cherry rootstocks in the Northeastern United States. Sodininkystė ir Daržininkystė 25(3):113–123

    Google Scholar 

  • Rogers WS, Beakbane AB (1957) Stock and Scion Relations. Annual Review of Plant Physiology 8(1):217–236. doi:10.1146/annurev.pp.08.060157.001245

    Article  CAS  Google Scholar 

  • Ruiz JM, Blasco B, Rivero RM, Romero L (2005) Nicotine-free and salt-tolerant tobacco plants obtained by grafting to salinity-resistant rootstocks of tomato. Physiol Plant 124(4):465–475. doi:10.1111/j.1399-3054.2005.00532.x

    Article  CAS  Google Scholar 

  • Russo NL, Robinson TL, Fazio G, Aldwinckle HS (2007) Field evaluation of 64 apple rootstocks for orchard performance and fire blight resistance. HortScience 42(7):1517–1525

    Google Scholar 

  • Santos A, Ribeiro R, Crespi AL (2004) Sweet cherry (Prunus avium) growth is mostly affected by rootstock and much less by budding height. NZ J Crop Hortic 32(3):309–318

    Article  Google Scholar 

  • Schmutz U, Ludders P (1999) Effect of NaCl salinity on growth, leaf gas exchange, and mineral composition of grafted mango rootstooks (var. ‘13–1’ and ‘Turpentine’). Gartenbauwissenschaf 64(2):60–64

    Google Scholar 

  • Seemüller E, Moll E, Schneider B (2009) Pear decline resistance in progenies of Pyrus taxa used as rootstocks. Eur J Plant Pathol 123(2):217–223. doi:10.1007/s10658-008-9360-8

    Article  Google Scholar 

  • Smith MW, Cheary BS, Carroll BL (2001) Rootstock and scion affect cold injury of young pecan trees. J Am Pomol Soc 55(2):124–128

    Google Scholar 

  • Smith MW, Hoult MD, Bright JD (2003) Rootstock affects yield, yield efficiency, and harvest rate of ‘Kensington Pride’ mango. HortScience 38(2):273–276

    Google Scholar 

  • Soar CJ, Dry PR, Loveys BR (2006) Scion photosynthesis and leaf gas exchange in Vitis vinifera L. cv. Shiraz: mediation of rootstock effects via xylem sap ABA. Aust J Grape Wine Res 12(2):82–96

    Article  CAS  Google Scholar 

  • Solari LI, DeJong TM (2006) The effect of root pressurization on water relations, shoot growth, and leaf gas exchange of peach (Prunus persica) trees on rootstocks with differing growth potential and hydraulic conductance. J Exp Bot 57(9):1981–1989. doi:10.1093/Jxb/Erj145

    Article  PubMed  CAS  Google Scholar 

  • Solari LI, Johnson S, Dejong TM (2006) Hydraulic conductance characteristics of peach (Prunus persica) trees on different rootstocks are related to biomass production and distribution. Tree Physiol 26(10):1343–1350

    Article  PubMed  Google Scholar 

  • Sorce C, Massai R, Picciarelli P, Lorenzi R (2002) Hormonal relationships in xylem sap of grafted and ungrafted Prunus rootstocks. Sci Hortic-Amsterdam 93(3–4):333–342

    Article  CAS  Google Scholar 

  • Stegemann S, Bock R (2009) Exchange of genetic material between cells in plant tissue grafts. Science 324(5927):649–651. doi:10.1126/science.1170397

    Article  PubMed  CAS  Google Scholar 

  • Sugar D, Hilton RJ, VanBuskirk PD (2005) Effects of kaolin particle film and rootstock on tree performance and fruit quality in ‘Doyenne du Comice’ pear. HortScience 40(6):1726–1728

    Google Scholar 

  • Thorp TG, Boyd LM, Barnett AM, Lowe RG, Hofstee BI, Blattmann PJ, Clearwater MJ (2007) Effect of inter-specific rootstocks on inorganic nutrient concentrations and fruit quality of ‘Hort16A’ kiwifruit (Actinidia chinensis Planch. var. chinensis). J Hortic Sci. Biotech 82(6):829–838

    CAS  Google Scholar 

  • Tombesi S, Johnson RS, Day KR, DeJong TM (2010) Relationships between xylem vessel characteristics, calculated axial hydraulic conductance and size-controlling capacity of peach rootstocks. Ann Bot-London 105(2):327–331. doi:10.1093/Aob/Mcp281

    Article  Google Scholar 

  • Tsipouridis C, Thomidis T (2005) Effect of 14 peach rootstocks on the yield, fruit quality, mortality, girth expansion and resistance to frost damages of May Crest peach variety and their susceptibility on Phytophthora citrophthora. Sci Hortic-Amsterdam 103(4):421–428. doi:10.1016/j.scienta.2004.08.004

    Article  Google Scholar 

  • Tworkoski T, Miller S (2007) Endogenous hormone concentrations and bud-break response to exogenous benzyl adenine in shoots of apple trees with two growth habits grown on three rootstocks. J Hortic Sci Biotech 82(6):960–966

    CAS  Google Scholar 

  • Van Hooijdonk BM, Woolley DJ, Warrington IJ, Tustin DS (2010) Initial alteration of scion architecture by dwarfing apple rootstocks may involve shoot-root-shoot signalling by auxin, gibberellin, and cytokinin. J Hortic Sci Biotech 85(1):59–65

    Google Scholar 

  • Webster AD (2004) Vigour mechanisms in dwarfing rootstocks for temperate fruit trees. Acta Hortic (ISHS) 658:29–41

    Google Scholar 

  • Whiting MD, Lang G, Ophardt D (2005) Rootstock and training system affect sweet cherry growth, yield, and fruit quality. HortScience 40(3):582–586

    Google Scholar 

  • Willingham SL, Pegg KG, Cooke AW, Coates LM, Langdon PWB, Dean JR (2001) Rootstock influences postharvest anthracnose development in ‘Hass’ avocado. Aust J Agric Res 52(10):1017–1022

    Article  Google Scholar 

  • Xu H, Zhang W, Li M, Harada T, Han Z, Li T (2010) Gibberellic acid insensitive mRNA transport in both directions between stock and scion in Malus. Tree Genetics Genomes 6(6):1013–1019. doi:10.1007/s11295-010-0309-7

    Article  Google Scholar 

  • Yin H, Yan B, Sun J, Jia P, Zhang Z, Yan X, Chai J, Ren Z, Zheng G, Liu H (2012) Graft-union development: a delicate process that involves cell–cell communication between scion and stock for local auxin accumulation. J Exp Bot 63(11):4219–4232. doi:10.1093/jxb/ers109

    Article  PubMed  CAS  Google Scholar 

  • Zhang WN, Gong L, Ma C, Xu HY, Hu JF, Harada T, Li TZ (2012) Gibberellic acid-insensitive mRNA transport in Pyrus. Plant Mol Biol Rep 30(3):614–623. doi:10.1007/s11105-011-0365-7

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Dr. Kate Evans, Pome Fruit Breeder, Washington State University for useful discussions and critical reading of the manuscript. TK acknowledges support received from NIH Protein Biotechnology Training Program T32GM008336 and ARCS fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tyson Koepke or Amit Dhingra.

Additional information

Communicated by P. Lakshmanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koepke, T., Dhingra, A. Rootstock scion somatogenetic interactions in perennial composite plants. Plant Cell Rep 32, 1321–1337 (2013). https://doi.org/10.1007/s00299-013-1471-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1471-9

Keywords

Navigation