Skip to main content
Log in

Apple phloem cells contain some mRNAs transported over long distances

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Apple (Malus × domestica Borkh.), like many fruit trees, cannot be propagated clonally from seed and is instead propagated by the grafting onto rootstocks. Rootstocks affect the growth of scions, but it is not known why. The circulation of some mRNAs throughout the phloem has recently been shown. To clarify whether RNAs are transported long distance through the graft union of apple trees, we analyzed cDNAs derived from shoot phloem cells by laser capture microdissection. We detected several mRNAs that have already been reported as phloem-transported RNAs in other plants. One of them, MpSLR/IAA14, was probed to transport a long distance through the graft union in grafted apple plant. These results suggest that a phloem RNA transport system may be involved in the effects of rootstocks on scion growth and cropping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aki T, Shigyo M, Nakano R, Yoneyama T, Yanagisawa S (2008) Nano scale proteomics revealed the presence of regulatory proteins including three FT-like proteins in phloem and xylem saps from rice. Plant Cell Physiol 49:767–790

    Article  CAS  PubMed  Google Scholar 

  • Aoki K, Suzui N, Fujimaki S, Dohmae N, Yonekura-Sakakibara K, Fujiwara T, Hayashi H, Yamaya T, Sakakibara H (2005) Destination-selective long-distance movement of phloem proteins. Plant Cell 17:1801–1814

    Article  CAS  PubMed  Google Scholar 

  • Banerjee AK, Chatterjee M, Yu Y, Suh S-G, Miller WA, Hannapel DJ (2006) Dynamics of a mobile RNA of potato involved in a long-distance signalling pathway. Plant Cell 18:3443–3457

    Article  CAS  PubMed  Google Scholar 

  • Barnes A, Bale J, Constantinidou C, Ashton P, Jones A, Pritchard J (2004) Determining protein identity from sieve element sap in Ricinus communis L. by quadrupole time of flight (Q-TOF) mass spectrometry. J Exp Bot 55:1473–1481

    Article  CAS  PubMed  Google Scholar 

  • Benitez-Alfonso Y, Cilia M, Roman AS, Thomas C, Maule A, Hearn S, Jackson D (2009) Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. PNAS 106:3615–3620

    Article  CAS  PubMed  Google Scholar 

  • Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–749

    Article  CAS  PubMed  Google Scholar 

  • Carrington JC, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to cell and long-distance transport of viruses in plants. Plant Cell 8:1669–1681

    Article  CAS  PubMed  Google Scholar 

  • Cheng W-S, Endo A, Zhou L, Penney J, Chen H-C, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signalling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    Article  CAS  PubMed  Google Scholar 

  • Deeken R, Ache P, Kajahn I, Klinkerberg J, Bringmann G, Hedrich R (2008) Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments. Plant J 55:746–759

    Article  CAS  PubMed  Google Scholar 

  • Doering-Saad C, Newbury HJ, Bale JS, Pritchard J (2002) Use of aphid stylectomy and RT-PCR for the detection of transporter mRNAs in sieve elements. J Exp Bot 53:631–637

    Article  CAS  PubMed  Google Scholar 

  • Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168

    Article  CAS  PubMed  Google Scholar 

  • Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J (2006) Towards the proteome of Brassica napus phloem sap. Proteomics 6:896–909

    Article  CAS  PubMed  Google Scholar 

  • Gómez G, Torres H, Pallás V (2005) Identification of translocatable RNA-binding phloem proteins from melon, potential components of the long-distance RNA transport system. Plant J 41:107–116

    Article  PubMed  Google Scholar 

  • Ham BK, Brandom JL, Xoconostle-Cázares B, Ringgold V, Lough TJ, Lucas WJ (2009) A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex. Plant Cell 21:197–215

    Article  CAS  PubMed  Google Scholar 

  • Haywood V, Yu TS, Huang NC, Lucas WJ (2005) Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J 42:49–68

    Article  CAS  PubMed  Google Scholar 

  • Huang N-H, Yu T-S (2009) The sequences of Arabidopsis GA-INSENSITIVE RNA constitute the motifs that are necessary and sufficient for RNA long-distance trafficking. Plant J 59:921–929

    Article  CAS  PubMed  Google Scholar 

  • Ishiwatari Y, Nemoto K, Fujiwara T, Chino M, Hayashi H (2000) In situ hybridization study of the rice phloem thioredoxin h mRNA accumulation—possible involvement in the differentiation of vascular tissues. Physiol Plant 109:90–96

    Article  CAS  Google Scholar 

  • Jensen PJ, Rytter J, Detwiler EA, Travis JW, McNellis TW (2003) Rootstock effects on gene expression patterns in apple tree scions. Plant Mol Biol 493:493–511

    Article  Google Scholar 

  • Jones OP (1971) Effects of rootstocks and interstocks on the xylem sap concentration in apple trees: effect on nitrogen, phosphorus and potassium content. Ann Bot 35:825–836

    CAS  Google Scholar 

  • Kamboj JS, Blake PS, Quinlan JD, Baker DA (1999) Identification and quantitation by GC-MS of zeatin and zeatin rioside in xylem sap from rootstock and scion of grafted apple trees. Plant Growth Reg 28:199–205

    Article  CAS  Google Scholar 

  • Kehr J, Buhtz A (2008) Long-distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Canio W, Kessler S, Sinha N (2001) Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293:287–289

    Article  CAS  PubMed  Google Scholar 

  • Korban SS, Chen H (1992) Apple. In: Hammershlag FA, Litz RL (eds) Biotechnology of perennial fruit crops. CAB Intl. Wallingford, UK, pp 203–227

    Google Scholar 

  • Kudo H, Harada T (2007) A graft-transmissible RNA from tomato rootstock changes leaf morphology of potato scion. HortScience 42:225–226

    CAS  Google Scholar 

  • Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, Kasmi FE, Jürgens G, Parker J, Panstruga R, Lipka V, Schulze-Lefert P (2008) Co-option of a default secretory pathway for plant immune responses. Nature 451:835–840

    Article  CAS  PubMed  Google Scholar 

  • Lin M-K, Lee YJ, Laugh TJ, Phinney BS, Lucas WJ (2009) Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol Cell Proteomics 8:343–356

    CAS  PubMed  Google Scholar 

  • Lin S-I, Chiang S-F, Lin W-Y, Chen J-W, Tseng C-Y, Wu P-C, Chiou T-J (2008) Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol 147:732–746

    Article  CAS  PubMed  Google Scholar 

  • Mir G, Domĕnech J, Huguet G, Guo WJ, Goldsbrough P, Atrian S, Molinas M (2004) A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. J Exp Bot 55:2483–2493

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk YK (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166

    Article  PubMed  Google Scholar 

  • Omid A, Keilin T, Glass A, Leshkowitz D, Wolf S (2007) Characterization of phloem-sap transcription profile in melon plants. J Exp Bot 58:3645–3656

    Article  CAS  PubMed  Google Scholar 

  • Palukaitis P (1987) Potato spindle tuber viroid investigation of the long-distance, intra-plant transport route. Virology 158:239–241

    Article  CAS  PubMed  Google Scholar 

  • Pant BD, Buhtz A, Kehr J, Scheible W-R (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738

    Article  CAS  PubMed  Google Scholar 

  • Pommerrenig B, Barth I, Niedermeier M, Kopp S, Schmid J (2006) Common plantain. A collection of expressed sequence tags from vascular tissue and a simple and efficient transformation method. Plant Physiol 142:1427–1441

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Medrano R, Xoconostle-Cázares B, Lucas WJ (1999) Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126:4405–4419

    CAS  PubMed  Google Scholar 

  • Soumelidou K, Morris DA, Battey NH, Barnett JR, John P (1994) Auxin transport capacity in relation to the dwarfing effect of apple rootstocks. J Hort Sci 69:719–725

    CAS  Google Scholar 

  • Taoka K, Ham BK, Xoconostle-Cázares B, Rojas MR, Lucas WJ (2007) Reciprocal phosphorylation and glucosylation recognition motifs control NCAPP1 interaction with pumpkin phloem proteins and their cell-to-cell movement. Plant Cell 19:1866–1884

    Article  CAS  PubMed  Google Scholar 

  • Traverso JA, Vignols F, Cazalis R, Pulido A, Sahrawy M, Cejudo FJ, Meyer Y, Chueca A (2007) PsTRXh1 and PsTRXh2 are both pea h-type thioredoxins with antagonistic behavior in redox imbalances. Plant Physiol 143:300–311

    Article  CAS  PubMed  Google Scholar 

  • van Bel AJE, Ehlers K, Knoblauch M (2002) Sieve elements caught in the act. Trends Plant Sci 7:126–132

    Article  PubMed  Google Scholar 

  • Vilaine F, Palauqui JC, Amselem J, Kusiak C, Lemoine R, Dinant S (2003) Towards deciphering phloem: a transcriptome analysis of the phloem of Apium graveolens. Plant J 36:67–81

    Article  CAS  PubMed  Google Scholar 

  • Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J (2004) Proteomics of cucurbit phloem exudate reveals a network of defense proteins. Phytochemistry 65:1795–1804

    Article  CAS  PubMed  Google Scholar 

  • Webster T (1994) Rootstock and interstock effects on deciduous fruit tree growth and cropping—a brief review. Compact Fruit Tree 27:5–16

    Google Scholar 

  • Westwood MN (1993) Temperate-zone pomology. Physiology and culture, 3rd edn. Timber Press, Portland, OR, USA

    Google Scholar 

  • Xoconostle-Cázares B, Xiang Y, Ruiz-Medrano R, Wang HL, Monzer J, Yoo BC, McFarland KC, Franceschi VR, Lucas WJ (1999) Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283:94–98

    Article  PubMed  Google Scholar 

  • Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank S. Oozeki and S. Kida for expert assistance with tissue culture. This work was supported by the Program for Promotion of Basic Research Activities for Innovative Bioscience (PROBRAIN) in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Harada.

Additional information

Communicated by E. Dirlewanger

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

(PDF 464 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanehira, A., Yamada, K., Iwaya, T. et al. Apple phloem cells contain some mRNAs transported over long distances. Tree Genetics & Genomes 6, 635–642 (2010). https://doi.org/10.1007/s11295-010-0279-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-010-0279-9

Keywords

Navigation