Skip to main content
Log in

MpAsr encodes an intrinsically unstructured protein and enhances osmotic tolerance in transgenic Arabidopsis

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Abscisic acid-, stress- and ripening (ASR) -induced proteins are plant-specific proteins whose expression is up-regulated under abiotic stresses or during fruit ripening. In this study, we characterized an ASR protein from plantain to explore its physiological roles under osmotic stress. The expression pattern of MpAsr gene shows that MpAsr gene changed little at the mRNA level, while the MpASR protein accumulates under osmotic treatment. Through bioinformatic-based predictions, circular dichroism spectrometry, and proteolysis and heat-stability assays, we determined that the MpASR protein is an intrinsically unstructured protein in solution. We demonstrated that the hydrophilic MpASR protein could protect l-lactate dehydrogenase (l-LDH) from cold-induced aggregation. Furthermore, heterologous expression of MpAsr in Escherichia coli and Arabidopsis enhanced the tolerance of transformants to osmotic stress. Transgenic 35S::MpAsr Arabidopsis seeds had a higher germination frequency than wild-type seeds under unfavorable conditions. At the physiological level, 35S::MpAsr Arabidopsis showed increased soluble sugars and decreased cell membrane damage under osmotic stress. Thus, our results suggest that the MpASR protein may act as an osmoprotectant and water-retaining molecule to help cell adjustment to water deficit caused by osmotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ASR:

ABA-, stress- and ripening-induced protein

CD:

Circular dichroism

E. coli :

Escherichia coli

FW:

Fresh weight

IDP:

Intrinsically disordered protein

LEA:

Late embryogenesis abundant protein

l-LDH:

l-lactate dehydrogenase

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

SSH:

Suppression subtractive hybridization

References

  • Agrios GN (2005) Parasitism and disease development. In: Plant pathology, 5th edn. Elsevier Academic Press, Amsterdam, pp 77–104

  • Anchordoquy TJ, Izutsu KI, Randolph TW, Carpenter JF (2001) Maintenance of quaternary structure in the frozen state stabilizes lactate dehydrogenase during freeze-drying. Arch Biochem Biophys 390(1):35–41

    Article  PubMed  CAS  Google Scholar 

  • Artlip T, Wisniewski M (1997) Tissue-specific expression of a dehydrin gene in one-year-old’Rio Oso Gem’peach trees. Am Soc Hortic Sci (USA) 122(6):784–787

    Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148(1):6–24

    Article  PubMed  CAS  Google Scholar 

  • Blancher C, Jones A (2001) SDS-PAGE and western blotting techniques. In: Brooks SA, Schumacher U (eds) Metastasis research protocols: methods in molecular medicine, vol 1. Humana Press Inc., Totowa, pp 145–162

    Chapter  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (2007) Molecular and physiological responses to water-deficit stress. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 121–140

    Chapter  Google Scholar 

  • Burg MB, Ferraris JD (2008) Intracellular organic osmolytes: function and regulation. J Biol Chem 283(12):7309–7313

    Article  PubMed  CAS  Google Scholar 

  • Cakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R (2003) A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15(9):2165–2180

    Article  PubMed  CAS  Google Scholar 

  • Carrari F, Fernie AR, Iusem ND (2004) Heard it through the grapevine? ABA and sugar cross-talk: the ASR story. Trends Plant Sci 9(2):57–59

    Article  PubMed  CAS  Google Scholar 

  • Crowther JR (1998) Enzyme-linked immunosorbent assay (ELISA). In: Rapley R, Walker JM (eds) Molecular biomethods handbook. Humana Press Inc., Totowa, pp 595–617

    Chapter  Google Scholar 

  • Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot 32(1):79

    Article  CAS  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350

    Article  CAS  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Wang H, Feng D, Liu B, Liu H, Wang J (2007) Molecular characterization of plantain class I chitinase gene and its expression in response to infection by Gloeosporium musarum Cke and massee and other abiotic stimuli. J Biochem 142:561–570

    Article  PubMed  CAS  Google Scholar 

  • Faurobert M, Pelpoir E, Chaïb J (2007) Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues. In: Thiellement H, Damerval C, Méchin V, Zivy M (eds) Plant proteomics: methods and protocols. Humana Press Inc., Totowa, pp 9–14

    Google Scholar 

  • Feng D, Liu B, Li W, He Y, Qi K, Wang H, Wang J (2009) Over-expression of a cold-induced plasma membrane protein gene (MpRCI) from plantain enhances low temperature-resistance in transgenic tobacco. Environ Exp Bot 65:395–402

    Article  CAS  Google Scholar 

  • Floris M, Mahgoub H, Lanet E, Robaglia C, Menand B (2009) Post-transcriptional regulation of gene expression in plants during abiotic stress. Int J Mol Sci 10(7):3168–3185

    Article  PubMed  CAS  Google Scholar 

  • Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275(8):5668–5674

    Article  PubMed  CAS  Google Scholar 

  • Goldgur Y, Rom S, Ghirlando R, Shkolnik D, Shadrin N, Konrad Z, Bar-Zvi D (2007) Desiccation and zinc binding induce transition of tomato abscisic acid stress ripening 1, a water stress- and salt stress-regulated plant-specific protein, from unfolded to folded state. Plant Physiol 143(2):617–628

    Article  PubMed  CAS  Google Scholar 

  • Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890

    Article  PubMed  CAS  Google Scholar 

  • Gsponer J, Futschik ME, Teichmann SA, Babu MM (2008) Tight regulation of unstructured proteins: from transcript synthesis to protein degradation. Science 322(5906):1365–1368

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19(3):1720

    PubMed  CAS  Google Scholar 

  • Hu YX, Guo JY, Shen L, Chen Y, Zhang ZC, Zhang YL (2002) Get effective polyclonal antisera in one month. Cell Res 12(2):157–160

    Article  PubMed  Google Scholar 

  • Ishida T, Kinoshita K (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucl Acids Res. doi:10.1093/nar/gkm363

  • Iusem ND, Bartholomew DM, Hitz WD, Scolnik PA (1993) Tomato (Lycopersicon esculentum) transcript induced by water deficit and ripening. Plant Physiol 102(4):1353–1354

    Article  PubMed  CAS  Google Scholar 

  • Kalifa Y, Gilad A, Konrad Z, Zaccai M, Scolnik PA, Bar-Zvi D (2004a) The water- and salt-stress-regulated Asr1 (abscisic acid stress ripening) gene encodes a zinc-dependent DNA-binding protein. Biochem J 381(Pt 2):373–378

    PubMed  CAS  Google Scholar 

  • Kalifa Y, Perlson E, Gilad A, Konrad Z, Scolnik PA, Bar-Zvi D (2004b) Over-expression of the water and salt stress-regulated Asr1 gene confers an increased salt tolerance. Plant Cell Environ 27(12):1459–1468

    Google Scholar 

  • Koda N, Asaeda T, Yamade K, Kawahara H, Obata H (2001) A novel cryoprotective protein (CRP) with high activity from the ice-nucleating bacterium, Pantoea agglomerans IFO12686. Biosci Biotechnol Biochem 65(4):888–894

    Article  PubMed  CAS  Google Scholar 

  • Konrad Z, Bar-Zvi D (2008) Synergism between the chaperone-like activity of the stress regulated ASR1 protein and the osmolyte glycine-betaine. Planta 227(6):1213–1219

    Article  PubMed  CAS  Google Scholar 

  • Kovacs D, Agoston B, Tompa P (2008) Disordered plant LEA proteins as molecular chaperones. Plant Signal Behav 3(9):710–713

    Article  PubMed  Google Scholar 

  • Liu H-Y, Dai J-R, Feng D-R, Liu B, Wang H-B, Wang J-F (2010) Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses. J Integr Plant Biol 52(3):315–323

    Article  PubMed  CAS  Google Scholar 

  • Madhava Rao KV (2006) Introduction. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 1–14

    Chapter  Google Scholar 

  • Reyes JL, Maria-J R, M C-FJ, Jose-V GIL, Adriana G-A, Francisco C, Francesco S, Dorothea B, Alejandra AC (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ 28(6):709–718

  • Maskin L, Gudesblat GE, Moreno JE, Carrari FO, Frankel N, Sambade A, Rossi M, Iusem ND (2001) Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum). Plant Sci 161(4):739

    Article  CAS  Google Scholar 

  • Maskin L, Frankel N, Gudesblat G, Demergasso MJ, Pietrasanta LI, Iusem ND (2007) Dimerization and DNA-binding of ASR1, a small hydrophilic protein abundant in plant tissues suffering from water loss. Biochem Biophys ResCommun 352(4):831–835

    Article  CAS  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133(3):481–489

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  PubMed  CAS  Google Scholar 

  • Mouillon JM, Eriksson SK, Harryson P (2008) Mimicking the plant cell interior under water stress by macromolecular crowding: disordered dehydrin proteins are highly resistant to structural collapse. Plant Physiol 148(4):1925–1937

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pang CH, Wang BS (2008) Oxidative stress and salt tolerance in plants. In: Lüttge U, Beyschlag W, Murata J (eds) Progress in botany. Springer, Berlin, pp 231–245

    Chapter  Google Scholar 

  • Pareek A, Sopory SK, Bohnert HJ, Govindjee, Majumder AL, Sengupta S, Goswami L (2010) Osmolyte regulation in abiotic stress. In: Abiotic stress adaptation in plants. Springer, The Netherlands, p 349

  • Parmentier-Line CM, Panta GR, Rowland LJ (2002) Changes in dehydrin expression associated with cold, ABA and PEG treatments in blueberry cell cultures. Plant Sci 162(2):273

    Article  CAS  Google Scholar 

  • Rom S, Gilad A, Kalifa Y, Konrad Z, Karpasas MM, Goldgur Y, Bar-Zvi D (2006) Mapping the DNA- and zinc-binding domains of ASR1 (abscisic acid stress ripening), an abiotic-stress regulated plant specific protein. Biochimie 88(6):621–628

    Article  PubMed  CAS  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, Gonzalez JA, Hilal M, Prado FE (2009) Soluble sugars–metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav 4(5):388–393

    Article  PubMed  CAS  Google Scholar 

  • Saumonneau A, Agasse A, Bidoyen MT, Lallemand M, Cantereau A, Medici A, Laloi M, Atanassova R (2008) Interaction of grape ASR proteins with a DREB transcription factor in the nucleus. FEBS Lett 582(23–24):3281–3287

    Article  PubMed  CAS  Google Scholar 

  • Shkolnik D, Bar-Zvi D (2008) Tomato ASR1 abrogates the response to abscisic acid and glucose in Arabidopsis by competing with ABI4 for DNA binding. Plant Biotechnol J 6(4):368–378

    Article  PubMed  CAS  Google Scholar 

  • Takasaki H, Mahmood T, Matsuoka M, Matsumoto H, Komatsu S (2008) Identification and characterization of a gibberellin-regulated protein, which is ASR5, in the basal region of rice leaf sheaths. Mol Genet Genomics 279(4):359–370

    Article  PubMed  CAS  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27(10):527–533

    Article  PubMed  CAS  Google Scholar 

  • Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579(15):3346–3354

    Article  PubMed  CAS  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94(10):791–812

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wang Q, Pape U, Shen B, Huang J, Wu B, Li X (2010) Systematic investigation of global coordination among mRNA and protein in cellular society. BMC Genomics 11(1):364

    Article  PubMed  Google Scholar 

  • Xiong L, Ishitani M (2006) Stress signal transduction: components, pathways and network integration. In: Rai AK, Takabe T (eds) Abiotic stress tolerance in plants: toward the improvement of global environment and food. Springer, Dordrecht, pp 3–29

    Chapter  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208(15):2819–2830. doi:10.1242/jeb.01730

    Article  PubMed  CAS  Google Scholar 

  • Yang CY, Chen YC, Jauh GY, Wang CS (2005) A Lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiol 139(2):836–846

    Article  PubMed  CAS  Google Scholar 

  • Yokota A, Takahara K, Akashi K (2006) Water stress. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 15–39

    Chapter  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30771235 and 30800600) and Natural Science Foundation of Guangdong Provincial, China (7003637).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bin Wang.

Additional information

Communicated by M. Petersen.

J.-R. Dai and B. Liu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1052 kb)

Supplementary material 2 (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, JR., Liu, B., Feng, DR. et al. MpAsr encodes an intrinsically unstructured protein and enhances osmotic tolerance in transgenic Arabidopsis. Plant Cell Rep 30, 1219–1230 (2011). https://doi.org/10.1007/s00299-011-1030-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1030-1

Keywords

Navigation