Skip to main content
Log in

Current trends and future prospects of biotechnological interventions through tissue culture in apple

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Apple (Malus domestica Borkh.), which is a widely cultivated, important economic fruit crop with nutritive and medicinal importance, has emerged as a model horticultural crop in this post-genomic era. Apple cultivation is heavily dependent on climatic condition and is susceptible to several diseases caused by fungi, bacteria, viruses, insects, etc. Extensive research work has been carried out to standardize tissue culture protocols and utilize them in apple improvement. We review the in vitro shoot multiplication, rooting, transformation and regeneration methodologies in apple and tabulate various such protocols for easy reference. The utility and limitation of transgenesis in apple improvement have also been summarized. The concepts of marker-free plants, use of non-antibiotic resistance selectable markers, and cisgenic and intragenic approaches are highlighted. Furthermore, the limitations, current trends and future prospects of tissue culture-mediated biotechnological interventions in apple improvement are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAP:

6-Benzylaminopurine

IBA:

Indole-3-butyric acid

IAA:

Indole-3-acetic acid

GA:

Gibbrellic acid

KN:

Kinetin

TDZ:

Thidiazuron

NAA:

1-Naphthyl acetic acid

2,4-D:

2,4-Dichlorophenoxy acetic acid

ABA:

Abscisic acid

TIBA:

2,3,5-Triiodobenzoic acid

References

  • Aklan K, Cetiner S, Aka-Kacar Y et al (1997) In vitro multiplication of clonal apple rootstocks M-9, M-26 and MM-106 by meristem culture. Acta Hortic 441:325–327

    Google Scholar 

  • Aldwinckle H, Malnoy M (2009) Plant regeneration and transformation in the Rosaceae. In: Nageswara-Rao M, Soneji JR (eds) Transgenic plant J, 3 (Special Issue 1) pp 1–39

  • Alvarez R, Nissen SJ, Sutter EG (1989) Relationship between indole-3-acetic acid levels in apple (Malus pumila Mill) rootstocks cultured in vitro and adventitious root formation in the presence of indole-3-butyric acid. Plant Physiol 89:439–443

    Article  CAS  PubMed  Google Scholar 

  • Awan KH, Khan A, Lodhi MA et al (1990) Observation on in vitro propagation of M9 apple rootstock (Malus sylvestris Mill). Pak J Agric Sci 27:64–68

    Google Scholar 

  • Bahmani R, Karami O, Gholami M (2009) Influence of carbon sources and their concentrations on rooting and hyperhydricity of apple rootstock MM.106. World Appl Sci J 6:1513–1517

    CAS  Google Scholar 

  • Belaizi M, Paul H, Sangwan RS et al (1991) In vitro regeneration of adventitious shoots from internodal segments of apple cv. Golden Delicious. Acta Hortic 289:83–84

    Google Scholar 

  • Bolar JP, Brown SK, Norelli JL et al (1999) Factors affecting the transformation of ‘Marshall McIntosh’ apple by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 55:31–38

    Article  Google Scholar 

  • Bondt AD, Eggermont K, Druart P et al (1994) Agrobacterium-mediated transformation of apple (Malus x domestica Borkh.): an assessment of factors affecting gene transfer efficiency during early transformation steps. Plant Cell Rep 13:587–593

    Article  Google Scholar 

  • Bondt AD, Eggermont K, Penninckx I et al (1996) Agrobacterium-mediated transformation of apple (Malus x domestica Borkh.): an assessment of factors affecting regeneration of transgenic plants. Plant Cell Rep 15:549–554

    Article  Google Scholar 

  • Borejsza-Wysocka EE, Norelli JL, Aldwinckle HS et al (1999) Transformation of authentic M.26 apple rootstock for enhanced resistance to fire blight. Acta Hortic 489:259–266

    Google Scholar 

  • Boyer J, Liu RH (2004) Apple phytochemicals and their health benefits. Nutr J 3:5. doi:10.1186/1475-2891-3-5

    Article  PubMed  Google Scholar 

  • Broothaerts W, Keulemans J, Van Nerum I (2004) Self-fertile apple resulting from S-RNase gene silencing. Plant Cell Rep 22:497–501

    Article  CAS  PubMed  Google Scholar 

  • Bulley SM, Wilson FM, Hedden P et al (2005) Modification of gibberellin biosynthesis in the grafted apple scion allows control of tree height independent of the rootstock. Plant Biotechnol J 3:215–223

    Article  CAS  PubMed  Google Scholar 

  • Bulley SM, Malnoy M, Atkinson RG et al (2007) Transformed apples: traits of significance to growers and consumers. Transgenic Plant J 1:267–279

    Google Scholar 

  • Caboni E, Lauri P, D’Angeli S (2000) In vitro plant regeneration from callus of shoot apices in apple shoot culture. Plant Cell Rep 19:755–760

    Article  CAS  Google Scholar 

  • Chakrabarty D, Dewir YH, Hahn EJ et al (2007) The dynamics of nutrient utilization and growth of apple root stock ‘M9 EMLA’ in temporary versus continuous immersion bioreactors. Plant Growth Regul 51:11–19

    Article  CAS  Google Scholar 

  • Chevreau E, Brisset MN, Paulin JP et al (1998) Fire blight resistance and genetic trueness-to-type of four somaclonal variants from the apple cultivar Greensleeves. Euphytica 104:199–205

    Article  Google Scholar 

  • Chevreau E, Taglioni JP, Cesbron C et al (2007) Feasibility of alternative selection methods for transgenic apple and pear using the detoxification gene Vr-ERE. Acta Hortic 738:277–281

    CAS  Google Scholar 

  • Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY (1975) Establishment of an efficient medium for anther culture in rice through comparative experiments on the nitrogen sources. Sci Sinica 18:659–668

    Google Scholar 

  • Ciccotti AM, Bisognin C, Battocletti I et al (2008) Micropropagation of apple proliferation-resistant apomictic Malus sieboldii genotypes. Agron Res 6:445–458

    Google Scholar 

  • Coart E, Van Glabeke S, De Loose M et al (2006) Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple (Malus sylvestris (L.) Mill.) and the domesticated apple (Malus domestica Borkh.). Mol Ecol 15:2171–2182

    Article  CAS  PubMed  Google Scholar 

  • Conner AJ, Barrell PJ, Baldwin SJ et al (2007) Intragenic vectors for gene transfer without foreign DNA. Euphytica 154:341–353

    Article  CAS  Google Scholar 

  • D’Angeli S, Lauri P, Dewitte W et al (2001) Factors affecting in vitro shoot formation from vegetative shoot apices of apple and relationship between organogenic response and cytokinin localization. Plant Biosyst 135:95–100

    Article  Google Scholar 

  • Degenhardt J, Szankowski I (2006) Transformation of apple (Malus domestica Borkh.) using the phosphomannose isomerase gene as a selectable marker. Acta Hortic 725:811–814

    CAS  Google Scholar 

  • Degenhardt J, Poppe A, Rösner L et al (2007) Alternative selection systems in apple transformation. Acta Hortic 738:287–292

    CAS  Google Scholar 

  • Dobránszki J, Teixeira da Silva JA (2010) Micropropagation of apple-A review. Biotechnol Adv. doi:10.1016/j.biotechadv.2010.02.008

  • Donovan AM, Morgan R, Valobra-Piagnani C et al (1994) Assessment of somaclonal variation in apple. I. Resistance to the fire blight pathogen Erwinia amylovora. J Hortic Sci 69:105–113

    Google Scholar 

  • Dufour M (1990) Improving yield of adventitious shoots in apple. Acta Hortic 280:51–60

    Google Scholar 

  • Flachowsky H, Hanke M-V (2009) Identification of cultivable bacteria from in vitro cultures of apple. Acta Hortic 814:733–738

    CAS  Google Scholar 

  • Flachowsky H, Szankowski I, Fischer TC et al (2010) Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight. Planta 231:623–635

    Article  CAS  PubMed  Google Scholar 

  • Gercheva P, Nacheva L, Dineva V (2009) The rate of shoot regeneration from apple (Malus domestica) leaves depending on the in vitro culture conditions of the source plants. Acta Hortic 825:71–75

    Google Scholar 

  • Gessler C, Patocchi A (2007) Recombinant DNA technology in apple. Adv Biochem Eng Biotechnol 107:113–132

    CAS  PubMed  Google Scholar 

  • Gessler C, Patocchi A, Sansavini S et al (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503

    Article  CAS  Google Scholar 

  • Grant NJ, Hammatt N (1999) Increased root and shoot production during micropropagation of cherry and apple rootstocks: effects of subculture frequency. Tree Physiol 19:899–903

    PubMed  Google Scholar 

  • Harris S, Robinson J, Juniper B (2002) Genetic clues to the origin of the apple. Trends Genet 18:426–430

    Article  CAS  PubMed  Google Scholar 

  • Höhnle M, Weber G (2007) Preliminary results of shoot regeneration from leaf explants of in vitro cultured shoots of the apple rootstock ‘M.9’. Acta Hortic 738:313–318

    Google Scholar 

  • Höhnle MK, Weber G (2009) Development of a suitable protocol to overcome hyperhydricity in apple (Malus sp.) during in vitro regeneration. Acta Hortic 839:287–291

    Google Scholar 

  • Holefors A, Xue Z-T, Welander M (1998) Transformation of the apple rootstock M26 with the rolA gene and its influence on growth. Plant Sci 136:69–78

    Article  CAS  Google Scholar 

  • Jacobsen E, Schouten HJ (2009) Cisgenesis: an important sub-invention for traditional plant breeding companies. Euphytica 170:235–247

    Article  Google Scholar 

  • James DJ, Uratsu S, Cheng J et al (1993) Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple. Plant Cell Rep 12:559–563

    Article  CAS  Google Scholar 

  • Jha G, Thakur K, Thakur P (2009) The Venturia apple pathosystem: pathogenicity mechanisms and plant defense responses. J Biomed Biotechnol 2009. doi:10.1155/2009/680160

  • Joshi SG, Soriano JM, Kortstee A et al (2009) Development of cisgenic apples with durable resistance to apple scab. Acta Hortic 839:403–406

    CAS  Google Scholar 

  • Kataeva NV, Butenko RG (1987) Clonal micropropagation of apple trees. Acta Hortic 212:585–588

    Google Scholar 

  • Kaushal N, Modgil M, Thakur M et al (2005) In vitro clonal multiplication of an apple rootstock by culture of shoot apices and axillary buds. Indian J Exp Biol 43:561–565

    CAS  PubMed  Google Scholar 

  • Kellerhals M, Sauer C, Guggenbuehl B et al (2004) Apple breeding for high fruit quality and durable disease resistance. Acta Hortic 663:751–756

    Google Scholar 

  • Lambardi M, Benelli C, Fabbri A (1997) In vitro axillary shoot proliferation of apple rootstocks under different ethylene conditions. In Vitro Cell Dev Biol Plant 33:70–74

    Article  CAS  Google Scholar 

  • Lee YP, Yu GH, Seo YS et al (2007) Microarray analysis of apple gene expression engaged in early fruit development. Plant Cell Rep 26:917–926

    Article  CAS  PubMed  Google Scholar 

  • Liu JR, Sink KC, Dennis FG (1983) Plant regeneration from apple seedling explants and callus cultures. Plant Cell Tissue Organ Cult 2:293–304

    Article  CAS  Google Scholar 

  • Liu Q, Salih S, Hammerschlag F (1998) Etiolation of ‘Royal Gala’ apple (Malus x domestica Borkh.) shoots promotes high-frequency shoot organogenesis and enhanced β-glucuronidase expression from stem internodes. Plant Cell Rep 18:32–36

    Article  CAS  Google Scholar 

  • Ma JH, Yao JL, Cohen D et al (1998) Ethylene inhibitors enhance in vitro root formation from apple shoot cultures. Plant Cell Rep 17:211–214

    Article  CAS  Google Scholar 

  • MacHardy WE (1996) Apple scab, biology, epidemiology, and management. APS Press, St. Paul

    Google Scholar 

  • Magyar-Tábori K, Dobránszki J, Teixeira da Silva JA et al (2010) The role of cytokinins in shoot organogenesis in apple. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-010-9696-6

  • Maheswaran G, Welander M, Hutchinson JF et al (1992) Transformation of apple rootstock M26 with Agrobacterium tumefaciens. J Plant Physiol 139:560–568

    Google Scholar 

  • Maheswaran G, Pridmore L, Franz P et al (2007) A proteinase inhibitor from Nicotiana alata inhibits the normal development of light-brown apple moth, Epiphyas postvittana in transgenic apple plants. Plant Cell Rep 26:773–782

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Aldwinckle HS (2007) Development of fire blight resistance by recombinant DNA technology. Plant Breed Rev 29:315–358

    Article  CAS  Google Scholar 

  • Malnoy M, Xu M, Borejsza-Wysocka E et al (2008) Two receptor-like genes, Vf1 and Vf2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol Plant Microbe Interact 21:448–458

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Boresjza-Wysocka EE, Norelli JL et al. (2010) Genetic transformation of apple (Malus x domestica) without use of a selectable marker gene. Tree Genet Genomes. doi:10.1007/s11295-009-0260-7

  • Marga F, Vebret L, Morvan H (1997) Agar fractions could protect apple shoots cultured in liquid media against hyperhydricity. Plant Cell Tissue Organ Cult 49:1–5

    Article  Google Scholar 

  • Markwick NP, Docherty LC, Phung MM et al (2003) Transgenic tobacco and apple plants expressing biotin-binding proteins are resistant to two cosmopolitan insect pests, potato tuber moth and light brown apple moth, respectively. Transgenic Res 12:671–681

    Article  CAS  PubMed  Google Scholar 

  • Maximova SN, Dandekar AM, Guiltinan MJ (1998) Investigation of Agrobacterium-mediated transformation of apple using green fluorescent protein: high transient expression and low stable transformation suggest that factors other than T-DNA transfer are rate-limiting. Plant Mol Biol 37:549–559

    Article  CAS  PubMed  Google Scholar 

  • Modgil M, Handa R, Sharma DR (1999a) Direct shoot regeneration from excised leaves of in vitro raised shoots of clonal apple rootstock, MM106. Curr Sci 76:278–279

    CAS  Google Scholar 

  • Modgil M, Sharma DR, Bhardwaj SV (1999b) Micropropagation of apple cv. Tydeman’s Early Worcester. Sci Hortic 81:179–188

    Article  CAS  Google Scholar 

  • Montecelli S, Gentile A, Damiano C (2000) In vitro shoot regeneration of apple cultivar Gala. Acta Hortic 530:219–223

    Google Scholar 

  • Mueller LA, Lankhorst RK, Tanksley SD et al (2009) A snapshot of the emerging tomato genome sequence. Plant Genome 2:78–92

    Article  CAS  Google Scholar 

  • Muleo R, Morini S (2006) Light quality regulates shoot cluster growth and development of MM106 apple genotype in in vitro culture. Sci Hortic 108:364–370

    Article  Google Scholar 

  • Muleo R, Morini S (2008) Physiological dissection of blue and red light regulation of apical dominance and branching in M9 apple rootstock growing in vitro. J Plant Physiol 165:1838–1846

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Murata M, Haruta M, Murai N et al (2000) Transgenic apple (Malus x domestica) shoot showing low browning potential. J Agric Food Chem 48:5243–5248

    Article  CAS  PubMed  Google Scholar 

  • Nacheva L, Ivanova K (2006) Influence of the gas-permeable closure of the vessels on the growth of in vitro cultured fruit plants. Agric Sci 4:26–32

    Google Scholar 

  • Nagy JK, Sule S, Sampaio JP (2005) Apple tissue culture contamination by Rhodotorula spp.: identification and prevention. In Vitro Cell Dev Biol Plant 41:520–524

    Article  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP et al (2006) Analysis of expressed sequence tags from apple. Plant Physiol 141:147–166

    Article  PubMed  Google Scholar 

  • Patena L, Sutter EG, Dandekar AM (1988) Root induction by Agrobacterium rhizogenes in a difficult-to-root woody species. Acta Hortic 227:324–329

    Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Pawlicki N, Welander M (1992) The effect of benzyladenine and gibberellic acid on adventitious root formation in apple stem discs. Agronomie 12:783–788

    Article  Google Scholar 

  • Phillips JG, Dardick CD, Schuyler KS et al (2008) Using an apple (Malus) microarray for expression analysis of responses to compatible and incompatible pathogens. Meeting Abstract MAPMBX Program Book pp 31

  • Predieri S, Fasolo Fabbri Malavasi F (1989) High frequency shoot regeneration from leaves of the apple rootstock M26 (Malus pumila Mill.). Plant Cell Tissue Organ Cult 17:133–142

    Article  Google Scholar 

  • Radchuk VV, Korkhovoy VI (2005) The rolB gene promotes rooting in vitro and increases fresh root weight in vivo of transformed apple scion cultivar ‘Florina’. Plant Cell Tissue Organ Cult 81:203–212

    Article  CAS  Google Scholar 

  • Rommens CM, Harings MA, Swords K et al (2007) The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci 12:397–403

    Article  CAS  PubMed  Google Scholar 

  • Rosati P, Menzzetti B, Anchenari M et al (1990) In vitro selection of apple rootstock somaclones with Phytophthora cactorum culture filtrate. Acta Hortic 280:409–416

    Google Scholar 

  • Rustaee M, Nazeri S, Ghadimzadeh M et al (2007) Optimizing in vitro regeneration from Iranian native dwarf rootstock of apple (Malus domestica Borkh). Int J Agric Biol 9:775–778

    CAS  Google Scholar 

  • Rustaei M, Nazeri S, Ghadimzadeh M et al (2009) Effect of phloroglucinol, medium type and some component on in vitro proliferation of dwarf rootstock of apple (Malus domestica). Int J Agric Boil 11:193–196

    CAS  Google Scholar 

  • Saito A, Suzuki M (1999) Plant regeneration from meristem-derived callus protoplasts of apple (Malus x domestica cv. ‘Fuji’). Plant Cell Rep 18:549–553

    Article  CAS  Google Scholar 

  • Sarwar M, Skirvin RM (1997) Effect of thidiazuron and 6-benzylaminopurine on adventitious shoot regeneration from leaves of three strains of ‘McIntosh’ apple (Malus X domestica Borkh.) in vitro. Sci Hortic 68:95–100

    Article  CAS  Google Scholar 

  • Savela M-L, Uosukainen M (1994) Characterization of bacteria contaminating tissue cultures of apple rootstock ‘YP’. J Appl Bacteriol 76:368–376

    Google Scholar 

  • Schaart JG, Krens FA, Pelgrom KTB et al (2004) Effective production of marker free transgenic strawberry plants using inducible site specific recombination and a bifunctional selectable marker. Plant Biotechnol J 2:233–240

    Article  CAS  PubMed  Google Scholar 

  • Seo YS, Kim WT (2009) A genomics approach using expressed sequence tags and microarrays in ripening apple fruit (Malus x domestica Borkh.). J Plant Biol 52:35–40

    Article  CAS  Google Scholar 

  • Seong ES, Song KJ (2008) Factors affecting the early gene transfer step in the development of transgenic ‘Fuji’ apple plants. Plant Growth Regul 54:89–95

    Article  CAS  Google Scholar 

  • Seong ES, Song KJ, Jegal S et al (2005) Silver nitrate and aminoethoxyvinylglycine affect Agrobacterium-mediated apple transformation. Plant Growth Regul 45:75–82

    Article  CAS  Google Scholar 

  • Sharma M, Modgil M, Sharma DR (2000) Successful propagation in vitro of apple rootstock MM106 and influence of phloroglucinol. Ind J Exp Biol 38:1236–1240

    CAS  Google Scholar 

  • Shih-Kin M, Shu-Qiong L, Yue-Kun Z et al. (1977) Induction of callus from apple endosperm and differentiation of the endosperm plantlet. Sci Sin XX:370–376

    Google Scholar 

  • Shulaev V, Korban SS, Sosinski B et al (2008) Multiple models for Rosaceae genomics. Plant Physiol 147:985–1003

    Article  CAS  PubMed  Google Scholar 

  • Singh BD (2005) Biotechnology expanding horizons. Kalyani Publishers, New Delhi

    Google Scholar 

  • Smolka A, Welander M, Olsson P et al (2009) Involvement of the ARRO-1 gene in adventitious root formation in apple. Plant Sci 177:710–715

    Article  CAS  Google Scholar 

  • Sriskandarajah S, Goodwin P (1998) Conditioning promotes regeneration and transformation in apple leaf explants. Plant Cell Tissue Organ Cult 53:1–11

    Article  CAS  Google Scholar 

  • Sriskandarajah S, Skirvin RM, Abu-Qaoud H (1990) The effect of some macronutrients on adventitious root development on scion apple cultivars in vitro. Plant Cell Tissue Organ Cult 21:185–189

    Article  CAS  Google Scholar 

  • Sriskandarajah S, Goodwin PB, Speirs J (1994) Genetic transformation of the apple scion cultivar ‘Delicious’ via Agrobacterium tumefaciens. Plant Cell Tissue Org Cult 36:317–329

    Article  Google Scholar 

  • Standardi A, Romani F (1990) Effects of some antioxidants on in vitro rooting of apple shoots. HortScience 25:1435–1436

    CAS  Google Scholar 

  • Szankowski I, Briviba K, Fleschhut J et al (2003) Transformation of apple (Malus x domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141–149

    Article  CAS  PubMed  Google Scholar 

  • Szankowski I, Waidmann S, Degenhardt J et al (2009) Highly scab-resistant transgenic apple lines achieved by introgression of HcrVf2 controlled by different native promoter lengths. Tree Genet Genomes 5:349–358

    Article  Google Scholar 

  • Tatum TC, Stepanovic S, Biradar DP et al (2005) Variation in nuclear DNA content in Malus species and cultivated apples. Genome 48:924–930

    CAS  PubMed  Google Scholar 

  • van der Krieken WM, Breteler H, Visser MHM (1991) Indolebutyric acid-induced root formation in apple tissue culture. Acta Hortic 289:343–344

    Google Scholar 

  • Veeriah S, Kautenburger T, Habermann N et al (2006) Apple flavonoids inhibit growth of HT29 human colon cancer cells and modulate expression of genes involved in the biotransformation of xenobiotics. Mol Carcinog 45:164–174

    Article  CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M et al (2009) Apple genome sequencing and post-genomic program at IASMA research center. Plant and animal genomes XVII conference P427

  • Wang A, Yamakake J, Kudo H et al (2009) Null mutation of the MdACS3 gene, coding for a ripening-specific 1-aminocyclopropane-1-carboxylate synthase, leads to long shelf life in apple fruit. Plant Physiol 151:391–399

    Article  CAS  PubMed  Google Scholar 

  • Welander M, Pawlicki N, Holefors A et al (1998) Genetic transformation of the apple rootstock M26 with the rolB gene and its influence on rooting. J Plant Physiol 153:371–380

    CAS  Google Scholar 

  • Wilson FM, James DJ (2003) Regeneration and transformation of the premier UK apple (Malus × pumila Mill.) cultivar Queen Cox. J Hortic Sci Biotechnol 78:656–662

    CAS  Google Scholar 

  • Wisniewski M, Bassett C, Norelli J et al (2008) Expressed sequence tag analysis of the response of apple (Malus x domestica ‘Royal Gala’) to low temperature and water deficit. Physiol Plant 133:298–317

    Article  CAS  PubMed  Google Scholar 

  • Yaseen M, Ahmed T, Abbasi NA et al (2009) In vitro shoot proliferation competence of apple rootstocks M.9 and M.26 on different carbon sources. Pak J Bot 41:1781–1795

    CAS  Google Scholar 

  • Zhang Z, Sun A, Cong Y et al (2006) Agrobacterium-mediated transformation of the apple rootstock Malus micromalus Makino with the rolC gene. In Vitro Cell Dev Biol Plant 42:491–497

    Article  CAS  Google Scholar 

  • Zhu LH, Holefors A, Ahlman A et al (2001) Transformation of the apple rootstock M9/29 with the rol B gene and its influence on rooting and growth. Plant Sci 160:433–439

    Article  CAS  PubMed  Google Scholar 

  • Zhu LH, Li XY, Welander M (2005) Optimisation of growing conditions for the apple rootstock M26 grown in RITA containers using temporary immersion principle. Plant Cell Tissue Organ Cult 81:313–318

    Article  Google Scholar 

  • Zhu LH, Li XY, Welander M (2008) Overexpression of the Arabidopsis gai gene in apple significantly reduces plant size. Plant Cell Rep 27:289–296

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SB was supported by a research fellowship from the University Grants Commission, Govt of India. The inputs and suggestions given by PS Ahuja during manuscript preparation are acknowledged. The work has been supported by research funding from CSIR. Due to space constraints, we have not been able to cite the valuable work of several researchers in this review. IHBT publication number: 2046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopaljee Jha.

Additional information

Communicated by R. Reski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatti, S., Jha, G. Current trends and future prospects of biotechnological interventions through tissue culture in apple. Plant Cell Rep 29, 1215–1225 (2010). https://doi.org/10.1007/s00299-010-0907-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0907-8

Keywords

Navigation