Skip to main content
Log in

Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Transgenic apple plants (Malus × domestica cv. ‘Holsteiner Cox’) overexpressing the Leaf Colour (Lc) gene from maize (Zea mays) exhibit strongly increased production of anthocyanins and flavan-3-ols (catechins, proanthocyanidins). Greenhouse plants investigated in this study exhibit altered phenotypes with regard to growth habit and resistance traits. Lc-transgenic plants show reduced size, transversal gravitropism of lateral shoots, reduced trichome development, and frequently reduced shoot diameter and abnormal leaf development with fused leaves. Such phenotypes seem to be in accordance with a direct or an indirect effect on polar-auxin-transport in the transgenic plants. Furthermore, leaves often develop necrotic lesions resembling hypersensitive response lesions. In tests, higher resistance against fire blight (caused by the bacterium Erwinia amylovora) and against scab (caused by the fungus Venturia inaequalis) is observed. These phenotypes are discussed with respect to the underlying altered physiology of the Lc-transgenic plants. The results are expected to be considered in apple breeding strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13:99–102

    Article  PubMed  CAS  Google Scholar 

  • Bazzi C, Messina C, Tortoreto L, Stefani E, Bini F, Brunelli A, Andreotti C, Sabatini E, Spinelli F, Costa G, Hauptmann S, Stammler G, Doerr S, Marr J, Rademacher W (2003) Control of pathogen incidence in pome fruits and other horticultural crop plants with prohexadione-Ca. Eur J Hortic Sci 68:108–114

    CAS  Google Scholar 

  • Bennett MJ, Marchant A, May ST, Swarup R (1998) Going the distance with auxin: unravelling the molecular basis of auxin transport. Phil Trans R Soc Lond B 353:1511–1515

    Article  CAS  Google Scholar 

  • Bolar JP, Brown SK, Norelli JL, Aldwinckle HS (1998) Factors affecting the transformation of ‘Marshall McIntosh’ apple by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 5:31–38

    Article  Google Scholar 

  • Bolar JP, Norelli JL, Wong KW, Hayes K, Harman GE, Aldwinckle HS (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77

    Article  PubMed  CAS  Google Scholar 

  • Boudet AM (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68:2722–2735

    Article  PubMed  CAS  Google Scholar 

  • Boudichevskaia A, Flachowsky H, Dunemann F (2008) Identification and molecular analysis of candidate genes homologous to HcrVf genes for scab resistance in apple. Plant Breed 128:84–91

    Article  Google Scholar 

  • Boyer J, Liu RH (2004) Apple phytochemicals and their health benefits. BMC Nutr J 3:1–15

    Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    Article  PubMed  CAS  Google Scholar 

  • Chen CH, Chen ZX (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129:706–716

    Article  PubMed  CAS  Google Scholar 

  • Cristina MD, Sessa G, Dolan L, Linstead P, Baima S, Ruberti I, Morelli G (1996) The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant J 10:393–402

    Article  PubMed  CAS  Google Scholar 

  • Eberhardt MV, Lee CY, Liu RH (2000) Antioxidant activity of fresh apples. Nature 405:903–904

    PubMed  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2006) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  PubMed  Google Scholar 

  • Fairchild CD, Schumaker MA, Quail PH (2009) HFR1 encodes an atypical bHLH protein that acts in phytochrome a signal transduction. Gene Dev 14:2377–2391

    Google Scholar 

  • Faize M, Malnoy M, Dupuis F, Chevalier M, Parisi L, Chevreau E (2003) Chitinases of Trichoderma atroviride induce scab resistance and some metabolic changes in two cultivars of apple. Phytopathology 93:1496–1504

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Pinas F, Wolk CP (1994) Expression of luxCD-E in Anabaena sp. can replace the use of exogenous aldehyde for in vivo localization of transcription by luxAB. Gene 150:169–174

    Article  PubMed  Google Scholar 

  • Fišerová H, Šebánek J, Hradilík J, Procházka S (2006) The effect of quercetine on leaf abscission of apple tree (Malus domestica Borkh.), growth of flax (Linum usitatissimum L.) and pea (Pisum sativum L.), and ethylene production. Plant Soil Environ 52:559–563

    Google Scholar 

  • Fitzgerald HA, Chern MS, Navarre R, Ronald PC (2004) Overexpression of (At)NPR1 in rice leads to a BTH- and environment-induced lesion-mimic/cell death phenotype. Mol Plant Microbe Interact 17:140–151

    Article  PubMed  CAS  Google Scholar 

  • Flachowsky H, Richter K, Kim W-S, Geider K, Hanke M-V (2008) Transgenic expression of a viral EPS-depolymerase is potentially useful to induce fire blight resistance in apple. Ann Appl Biol 1153:345–355

    Article  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JR, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  PubMed  CAS  Google Scholar 

  • Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: how we are going to express it? Trends Biotechnol 23:283–290

    Article  PubMed  CAS  Google Scholar 

  • Heisler MGB, Atkinson A, Bylstra YH, Walsh R, Smyth DR (2001) SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein. Development 128:1089–1098

    PubMed  CAS  Google Scholar 

  • Hülskamp M (2004) Plant trichomes: a model for cell differentiation. Nature Rev 5:471–480

    Article  Google Scholar 

  • Jansen MAK (2002) Ultraviolet-B radiation effects on plants: induction of morphogenic responses. Physiol Plant 116:423–429

    Article  CAS  Google Scholar 

  • Korneef M (1981) The complex syndrome of ttg mutants. Arabidopsis Inf Serv 18:45–51

    Google Scholar 

  • Lee KW, Kim YJ, Kim DO, Lee HJ, Lee CY (2003) Major phenolics in apple and their contribution to the total antioxidant capacity. J Agric Food Chem 51:6516–6520

    Article  PubMed  CAS  Google Scholar 

  • Leser C, Treutter D (2005) Effects of nitrogen supply on growth, contents of phenolic compounds and pathogen (scab) resistance of apple trees. Physiol Plant 123:49–56

    Article  CAS  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defence. Plant Cell 16:319–331

    Article  PubMed  CAS  Google Scholar 

  • Li H, Flachowsky H, Fischer TC, Hanke M-V, Forkmann G, Treutter D, Schwab W, Hoffmann T, Szankowski I (2007) Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226:1243–1254

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AM, Walbot V, Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 11:1773–1775

    Article  Google Scholar 

  • Ludwig SR, Habera LF, Dellaporta SL, Wessler SR (1989) Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Natl Acad Sci USA 86:7092–7096

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Rizhsky L (2000) Transgene-induced lesion mimic. Plant Mol Biol 44:335–344

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Murphy A, Peer WA, Taiz L (2000) Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta 211:315–324

    Article  PubMed  CAS  Google Scholar 

  • Ni M, Tepperman JM, Quail PH (1998) PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95:657–667

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Ueda I, Komaki MK, Bell C, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684

    Article  PubMed  CAS  Google Scholar 

  • Payne CT, Zhang F, Lloyd AM (2000) GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156:1349–1362

    PubMed  CAS  Google Scholar 

  • Peer WA, Brown DE, Tague BW, Muday GK, Taiz L, Murphy AS (2001) Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol 126:536–548

    Article  PubMed  CAS  Google Scholar 

  • Pontais I, Treutter D, Paulin J-P, Brisset M-N (2008) Erwinia amylovora modifies phenolic profiles of susceptible and resistant apple through its type III secretion system. Physiol Plant 132:262–271

    Article  PubMed  CAS  Google Scholar 

  • Rerie WG, Feldmann KA, Marks MD (1994) The galbra 2 gene encodes a homeodomain protein required for normal trichome development in Arabidopsis. Gene Dev 8:1388–1399

    Article  PubMed  CAS  Google Scholar 

  • Roig-Villanova I, Bou-Torrent J, Galstyan A, Carretero-Paulet L, Portolés S, Rodrıíguez-Concepción M, Martínez-Garcia JF (2007) Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins. EMBO J 26:4756–4767

    Article  PubMed  CAS  Google Scholar 

  • Römmelt S, Treutter D, Speakman JB, Rademacher W (1999) Effects of prohexadione-Ca on the flavonoid metabolism of apple with respect to plant resistance against fire blight. Acta Hortic 489:359–363

    Google Scholar 

  • Serna L, Martin C (2006) Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci 11:274–280

    Article  PubMed  CAS  Google Scholar 

  • Stenlid G (1976) Effects of flavonoids on the polar transports of auxins. Physiol Plant 38:262–266

    Article  CAS  Google Scholar 

  • Szankowski I, Flachowsky H, Li H, Halbwirth H, Treutter D, Regos I, Hanke M-V, Stich K, Fischer TC (2009) Shift in polyphenol profile and sublethal phenotype caused by silencing of anthocyanidin synthase in apple (Malus sp.). Planta 229:681–692

    Article  PubMed  CAS  Google Scholar 

  • Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232

    Article  PubMed  CAS  Google Scholar 

  • Treutter D (2001) Biosynthesis of phenolic compounds and its regulation in apple. Plant Growth Regul 34:71–89

    Article  CAS  Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157

    Article  CAS  Google Scholar 

  • Venisse JS, Malnoy M, Faize M, Paulin JP, Brisset MN (2002) Modulation of defense responses of Malus spp. during compatible and incompatible interactions with Erwinia amylovora. Mol Plant Microbe Interact 15:1204–1212

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support for several parts of this study by the Federal Ministry for Education and Research (BMBF), Germany. The authors thank Ramon Tórres-Ruiz (TU Munich, Germany) for discussion of auxin effects and Eva Facher (University of Munich, Germany) for the scanning raster electron microscopy. Furthermore, we are grateful to Ines Hiller, Katrin Winkler, Ines Polster, Uta Hille, Simone Schöber and Gisela Schulz for their technical assistance. Parts of this work were done in the frame of the European COST-action 864.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magda-Viola Hanke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flachowsky, H., Szankowski, I., Fischer, T.C. et al. Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight. Planta 231, 623–635 (2010). https://doi.org/10.1007/s00425-009-1074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-1074-4

Keywords

Navigation