Skip to main content

Advertisement

Log in

A history of plant biotechnology: from the Cell Theory of Schleiden and Schwann to biotech crops

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Plant biotechnology is founded on the principles of cellular totipotency and genetic transformation, which can be traced back to the Cell Theory of Matthias Jakob Schleiden and Theodor Schwann, and the discovery of genetic transformation in bacteria by Frederick Griffith, respectively. On the 25th anniversary of the genetic transformation of plants, this review provides a historical account of the evolution of the theoretical concepts and experimental strategies that led to the production and commercialization of biotech (transformed or transgenic) plants expressing many useful genes, and emphasizes the beneficial effects of plant biotechnology on food security, human health, the environment, and conservation of biodiversity. In so doing, it celebrates and pays tribute to the contributions of scores of scientists who laid the foundation of modern plant biotechnology by their bold and unconventional thinking and experimentation. It highlights also the many important lessons to be learnt from the fascinating history of plant biotechnology, the significance of history in science teaching and research, and warns against the danger of the growing trends of ignoring history and historical illiteracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amici GB (1824) Observations microscopiques sur diverses espèces de plantes. Ann Sci Nat Bot 2:41–70, 211–248

    Google Scholar 

  • Amici GB (1830) Note sur le mode d’action du pollen sur le stigmate. Extrait d’une lettre d’Amici à Mirbel. Ann Sci Nat Bot 21:329–332

    Google Scholar 

  • Amici GB (1844) Quatrieme reunion des naturalists italiens. Flora 1:359

    Google Scholar 

  • Amici GB (1847) Sur la fécondation des Orchidées. Ann Sci Nat Bot 7(8):193–205

    Google Scholar 

  • Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus Type III. J Exp Med 79:137–158

    Article  CAS  Google Scholar 

  • Backs-Hüsemann D, Reinert J (1970) Embryobildung durch isolierte Einzellen aus Gewebekulturen von Daucus carota. Protoplasma 70:49–60

    Article  Google Scholar 

  • Barry GF, Rogers SG, Fraley RT, Brand L (1984) Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci USA 81:4776–4780

    Article  PubMed  CAS  Google Scholar 

  • Bergmann L (1959) A new technique for isolating and cloning cells of higher plants. Nature 184:648–649

    Article  Google Scholar 

  • Bergmann L (1960) Growth and division of single cells of higher plants in vitro. J Gen Physiol 43:841–851

    Article  PubMed  CAS  Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    Article  CAS  Google Scholar 

  • Bomhoff G, Klapwijk PM, Kester HCM, Schilperoort RA, Hernalsteens JP, Schell J (1976) Octopine and nopaline synthesis and breakdown genetically controlled by a plasmid of Agrobacterium tumefaciens. Mol Gen Genet 145:177–181

    Article  PubMed  CAS  Google Scholar 

  • Botti C, Vasil IK (1983) Ontogeny of somatic embryos of Pennisetum americanum. II. In cultured immature inflorescences. Can J Bot 62:1629–1635

    Google Scholar 

  • Boysen-Jensen P (1910) Über die Leitung des phototropischen Reizes in Avena–keimpflanzen. Ber Dtsch Bot Ges 28:118–120

    Google Scholar 

  • Braun AC (1947) Thermal studies on the factors responsible for tumor initiation in crown gall. Am J Bot 34:234–240

    Article  Google Scholar 

  • Braun AC (1958) A physiological basis for autonomous growth of the crown-gall tumor cell. Proc Natl Acad Sci USA 44:344–349

    Article  PubMed  CAS  Google Scholar 

  • Braun AC (1982) A history of the crown gall problem. In: Kahl G, Schell JS (eds) Molecular biology of plant tumors. Academic Press, New York, pp 155–210

    Google Scholar 

  • Chilton M-D (2001) Agrobacterium. A memoir. Plant Physiol 125:9–14

    Article  PubMed  CAS  Google Scholar 

  • Chilton M-D, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  PubMed  CAS  Google Scholar 

  • Chilton M-D, Saiki RK, Yadav N, Gordon MP, Quetier F (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proc Natl Acad Sci USA 77:4060–4064

    Article  PubMed  CAS  Google Scholar 

  • Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187:927–929

    Article  Google Scholar 

  • Cocking EC (2000) Plant protoplasts. In Vitro Cell Dev Biol Plant 36:77–82

    Google Scholar 

  • Conger BV, Hanning GE, Gray DJ, McDaniel JK (1983) Direct embryogenesis from mesophyll cells of orchard grass. Science 221:850–851

    Article  PubMed  Google Scholar 

  • Constabel F, Vasil IK (eds) (1987) Cell culture and somatic cell genetics of plants. Cell culture in phytochemistry, vol 4. Academic Press, New York

  • Constabel F, Vasil IK (eds) (1988) Cell culture and somatic cell genetics of plants. Phytochemicals in plant cell cultures, vol 5. Academic Press, New York

  • Darwin C (1880) The power of movement in plants. John Murray, London

    Google Scholar 

  • Davey MR, Cocking EC, Freeman J, Pearce N, Tudor I (1980) Transformation of petunia protoplasts by isolated Agrobacterium plasmids. Plant Sci Lett 18:307–313

    Article  CAS  Google Scholar 

  • De Block M, Herrera-Estrella L, Van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J 3:1681–1689

    PubMed  Google Scholar 

  • De Framond AJ, Barton KA, Chilton M-D (1983) Mini-Ti: a new vector strategy for plant genetic engineering. Biotechnology 1:262–269

    Article  Google Scholar 

  • De la Pena A, Lorz H, Schell J (1987) Transgenic rye plants obtained by injecting DNA into floral tillers. Nature 235:274–276

    Article  Google Scholar 

  • De Wet JMJ, De Wet AE, Brink DE, Hepburn AG, Woods JH (1986) Gametophyte transformation in maize (Zea mays, Gramineae). In: Mulcahy DL, Mulcahy GB, Ottaviano E (eds) Biotechnology and ecology of pollen. Springer, New York, pp 59–64

    Google Scholar 

  • Doy CH, Gresshoff PM, Rolfe BG (1973) Biological and molecular evidence for the transgenosis of genes from bacteria to plant cells. Proc Natl Acad Sci USA 70:723–726

    Article  PubMed  Google Scholar 

  • Fox JL (2006) Turning plants into protein factories. Nature Biotechnol 24:1191–1193

    Article  CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807

    Article  PubMed  CAS  Google Scholar 

  • Fromm M, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793

    Article  PubMed  CAS  Google Scholar 

  • Gautheret RJ (1934) Culture du tissues cambial. C R Hebd Seances Acad Sc 198:2195–2196

    Google Scholar 

  • Gautheret RJ (1939) Sur la possibilité de realiser a culture indefinite des tissues de tubercules de carotte. C R Hebd Seances Acad Sc 208:118–120

    Google Scholar 

  • Gautheret RJ (1985) History of plant tissue and cell culture. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Cell growth, nutrition, cytodifferentiation, and cryopreservation, vol 2. Academic Press, New York, pp 1–59

    Google Scholar 

  • Giles KL (ed) (1983) Plant protoplasts. Int Rev Cytol, Supp 16. Academic Press, New York

  • Gleba YY, Sytnik KM (1984) Protoplast fusion: genetic engineering in higher plants. Springer, Heidelberg

    Google Scholar 

  • Goldman A, Tempé J, Morel G (1968) Quelques particularités de diverses souches d’ Agrobacterium tumefaciens. C R Seances Soc Biol Ses Fil 162:623–631

    Google Scholar 

  • Grant JE, Pandey KK, Williams EG (1980) Pollen nuclei after ionizing radiation for egg transformation. N Z J Bot 18:339–341

    Google Scholar 

  • Graves A, Goldman S (1986) The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol Biol 7:43–50

    Article  CAS  Google Scholar 

  • Griffith F (1928) The significance of pneumococcal types. J Hyg 27:113–119

    Google Scholar 

  • Grimsley N, Hohn B, Hohn T, Walden R (1986) ‘Agroinfection’, an alternative route for viral infection of plants by using the Ti plasmid. Proc Natl Acad Sci USA 83:3282–3286

    Article  PubMed  CAS  Google Scholar 

  • Guha-Mukherjee S (1999) The discovery of haploid production by anther culture. In Vitro Cell Dev Biol Plant 35:357–360

    Google Scholar 

  • Guha S, Maheshwari SC (1966) Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature 212:97–98

    Article  Google Scholar 

  • Haberlandt G (1902) Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber K Preuss Akad Wiss Wien. Math Naturwiss 111:69–92

    Google Scholar 

  • Haberlandt G (1913) Zur Physiologie der Zellteilung. Sitz Ber K. Preuss Akad Wiss 1913:318–345

    Google Scholar 

  • Haberlandt G (1921) Wundhormone als Erreger von Zellteilungen. Beitr Allg Bot 2:1–53

    Google Scholar 

  • Halperin W (1966) Single cells, coconut milk, and embryogenesis in vitro. Science 153:1287–1288

    Article  PubMed  CAS  Google Scholar 

  • Halperin W (1970) Embryos from somatic plant cells. Symp Int Soc Cell Biol 9:169–191

    Google Scholar 

  • Hamilton RH, Chopan MN (1975) Transfer of the tumor inducing factor in Agrobacterium tumefaciens. Biochem Biophys Res Comm 63:349–354

    Article  PubMed  CAS  Google Scholar 

  • Hamilton RH, Fall MZ (1971) The loss of tumor-inducing ability in Agrobacterium tumefaciens by incubation at high temperature. Experientia 27:229–230

    Article  PubMed  CAS  Google Scholar 

  • Hauptmann RM, Vasil V, Ozias-Akins P, Tabaizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiol 86:602–606

    PubMed  CAS  Google Scholar 

  • Heller R (1953) Récherches sur la nutrition minerale des tissues végétaux cultives in vitro. Ann Sci Nat Bot Biol Veg 14:1–223

    Google Scholar 

  • Hernalsteens J-P, Thia-Toong L, Schell J, Van Montagu M (1984) An Agrobacterium transformed cell culture from the monocot Asparagus officinalis. EMBO J 3:3039–3041

    PubMed  CAS  Google Scholar 

  • Herrera-Estrella L, De Block M, Messens E, Hernalsteens JP, Van Montagu M, Schell J (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2:987–995

    PubMed  CAS  Google Scholar 

  • Hess D (1969a) Versuche zur Transformation an höheren Pflanzen: Induktion und konstante Weitergabe der Anthocyansynthese bei Petunia hybrida. Z Pflanzenphysiol 60:348–358

    CAS  Google Scholar 

  • Hess D (1969b) Versuche zur Transformation an höheren Pflanzen: Wiederholung der Anthocyanin-Induktion bei Petunia und erste Charakterisierung des transformierenden Prinzips. Z Pflanzenphysiol 61:286–298

    CAS  Google Scholar 

  • Hess D (1978) Genetic effects in Petunia hybrida induced by pollination with pollen treated with lac transducing phages. Z Pflanzenphysiol 90:119–132

    CAS  Google Scholar 

  • Hess D (1979) Genetic effects in Petunia hybrida induced by pollination with pollen treated with gal transducing phages. Z Pflanzenphysiol 93:429–436

    Google Scholar 

  • Hess D (1980) Investigations on the intra- and interspecific transfer of anthocyanin genes using pollen as vectors. Z Pflanzenphysiol 98:321–337

    CAS  Google Scholar 

  • Hess D, Dressler K (1984) Bacterial transferase activity expressed in Petunia progenies. J Plant Physiol 116:261–272

    CAS  Google Scholar 

  • Hess D, Scheinder G, Lorz H, Blaich G (1976) Investigations on the tumor induction in Nicotiana glauca by pollen transfer of DNA isolated from Nicotiana langsdorfii. Z Pflanzenphysiol 77:247–254

    CAS  Google Scholar 

  • Hess D, Dressler K, Nimmrichter R (1990) Transformation experiments by pipetting Agrobacterium into spikelets of wheat (Triticum aestivum L.). Plant Sci 72:233–244

    Article  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt AC, Riker AJ (1949) The influence of various carbon compounds on the growth of marigold, Paris-daisy, periwinkle, sunflower and tobacco tissue in vitro. Am J Bot 36:74–85

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt AC, Riker AJ (1953) Influence of concentrations of sugars and polysaccharides on callus tissue grown in vitro. Am J Bot 40:66–76

    Article  CAS  Google Scholar 

  • Hildebrandt AC, Riker AJ, Duggar BM (1946) The influence of the composition of the medium on growth in vitro of excised tobacco and sunflower tissue cultures. Am J Bot 33:591–597

    Article  CAS  Google Scholar 

  • Ho J-W, Vasil IK (1983) Somatic embryogenesis in sugarcane (Saccharum officinarum L.). I. The morphology and physiology of callus formation and ontogeny of somatic embryos. Protoplasma 118:169–180

    Article  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hofmeister W (1849) Die Entstehung des Embryo des Phanerogamen. Leipzig

  • Hooykaas-Van Slogteren GMS, Hooykaas PJJ, Schilperoort RA (1984) Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature 311:763–764

    Article  CAS  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Hoffmann N (1984) Inheritance of functional genes in plants. Science 223:496–498

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method of transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Jablonski JR, Skoog F (1954) Cell enlargement and cell division in excised tobacco pith tissue. Physiol Plant 7:16–24

    Article  CAS  Google Scholar 

  • James C (2007) Global status of commercialized biotech/GM crops: 2007. ISAAA Brief 37

  • Jinks JL, Caligari PDS, Ingram NR (1981) Gene transfer in Nicotiana rustica using irradiated pollen. Nature 291:586–588

    Article  Google Scholar 

  • Jones TJ, Rost TL (1989) The developmental anatomy and ultrastructure of somatic embryos from rice (Oryza sativa L) scutellum epithelial cells. Bot Gaz 150:41–49

    Article  Google Scholar 

  • Jones LE, Hildebrandt AC, Riker AJ (1960) Growth of somatic tobacco cells in microculture. Am J Bot 47:468–475

    Article  Google Scholar 

  • Kahl G, Schell JS (eds) (1982) Molecular biology of plant tumors. Academic Press, New York

    Google Scholar 

  • Kartha KK (1984) Elimination of viruses. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Laboratory procedures and their applications, vol 1. Academic Press, New York, pp 577–585

    Google Scholar 

  • Kerr (1969) Transfer of virulence between isolates of Agrobacterium. Nature 223:1175–1176

  • Kerr A (1971) Acquisition of virulence by non-pathogenic isolates of Agrobacterium radiobacter. Physiol Plant Path 1:241–246

    Article  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73

    Article  CAS  Google Scholar 

  • Knop W (1865) Quantitative Untersuchungen über den Ernährungsprozess der Pflanzen. Landwirtsch Vers Stn 7:93–107

    Google Scholar 

  • Kögl F, Kostermans DGFR (1934) Heteroauxin als Stoff-wechselproduckt niederer pflanzlicher Organismen Isolierung aus Hefe, XIII. Z Physiol Chem 228:113–121

    Google Scholar 

  • Kögl F, Haagen-Smit AJ, Erxleben H (1934) Über ein neues auxin (“Heteroauxin”) aus Harn, XI. Z Physiol Chem 228:90–103

    Google Scholar 

  • Komari T, Kubo T (1999) Methods of genetic transformation: Agrobacterium tumefaciens. In: Vasil IK (ed) Advances in cellular and molecular biology of plants. Molecular improvement of cereal crops, vol 5. Kluwer, Dordrecht, pp 43–82

    Google Scholar 

  • Konar RN, Nataraja K (1965a) Production of embryos on the stem of Ranunculus sceleratus L. Experientia 21:395

    Article  Google Scholar 

  • Konar RN, Nataraja K (1965b) Experimental studies in Ranunculus sceleratus L. Development of embryos from stem explants. Phytomorphology 15:132–137

    CAS  Google Scholar 

  • Kotte W (1922) Kulturversuche mit isolierten Wurzelspitzen. Beitr Allg Bot 2:413–443

    Google Scholar 

  • Krikorian AD, Berquam DL (1969) Plant cell and tissue culture: the role of Haberlandt. Bot Rev 35:59–88

    Article  Google Scholar 

  • Krikorian AD, Simola LK (1999) Totipotency, somatic embryogenesis, and Harry Waris (1893–1973). Physiol Plant 105:348–355

    Article  CAS  Google Scholar 

  • Laimer M, Rücker W (eds) (2002) Plant tissue culture: 100 years since Gottlieb Haberlandt. Springer, Vienna

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  Google Scholar 

  • Ledoux L, Huart R (1969) Fate of exongenous bacterial deoxyribonucleic acid in barley seedling. J Mol Biol 43:243–248

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Vasil IK (1982) Somatic embryogenesis and plant regeneration from tissue cultures of Panicum maximum. Amer J Bot 69:77–81

    Article  Google Scholar 

  • Luo Z, Wu R (1988) A simple method for the transformation of rice via the pollen tube pathway. Plant Mol Biol Rep 6:165–174

    Article  CAS  Google Scholar 

  • Ma J, Barros E, Bock R, Christou P, Dale PJ, Dix PJ, Fischer R, Irwin J, Mahoney R, Pezzotti M, Schillberg S, Sparrow P, Stoger E, Twyman RM (2005) Molecular farming for new drugs and vaccines: current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep 6:593–599

    Article  PubMed  CAS  Google Scholar 

  • Marton L, Wullems GJ, Molendijk L, Schilperoort RA (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277:129–131

    Article  Google Scholar 

  • Menagé A, Morel G (1964) Sur la presence d’octopine dans les tissue de crown-gall. C R Acad Sci Paris 259:4795–4796

    PubMed  Google Scholar 

  • Miller CO, Skoog F, Von Saltza MH, Strong FM (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77:1392

    Article  CAS  Google Scholar 

  • Miller CO, Skoog F, Okumura FS, von Saltza M, Strong FW (1956) Isolation, structure and synthesis of kinetin, a substance promoting cell division. J Am Chem Soc 78:1375–1380

    Article  CAS  Google Scholar 

  • Molliard M (1921) Sur le développement des plantules fragmentées. C R Soc Biol (Paris) 84:770–772

    Google Scholar 

  • Morel G, Martin C (1952) Guérison de dahlias atteints d’une maladie á virus. C R Hebd Seances Acad Sci 235:1324–1325

    PubMed  CAS  Google Scholar 

  • Morel G, Martin C (1955) Guérison de pommes de terre atteintes de maladies á virus. C R Seances Acad Agric Fr 41:472–475

    Google Scholar 

  • Morel GM, Goldmann A, Petit A, Tempé J (1969) Evidence for the transmission of a permanent information from A. tumefaciens to the plant cell during tumoral formation. In: Proc 11th int bot cong, Abs 151

  • Muir WH, Hildebrandt AC, Riker AJ (1954) Plant tissue cultures produced from isolated single cells. Science 119:877–878

    Article  Google Scholar 

  • Muir WH, Hildebrandt AC, Riker AJ (1958) The preparation, isolation, and growth in culture of single cells from higher plants. Am J Bot 45:589–597

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murphy DJ (2007) Improving containment strategies in biopharming. Plant Biotech J 5:555–569

    Article  CAS  Google Scholar 

  • Nagata T, Takebe I (1970) Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts. Planta 92:301–308

    Article  Google Scholar 

  • Nawaschin SG (1898) Resultate einer Revision der Befruchtungsvorgänge bei Lilium martagon und Fritillaria tenella. Bull Acad Imp des Sci St Peterburg 9:377–382

    Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  PubMed  Google Scholar 

  • Nobécourt P (1939) Sur la pérennité et l’augmentation de volume des cultures de tissues végétaux. C R Seances Soc Biol Ses Fil 130:1270–1271

    Google Scholar 

  • Ohta Y (1986) High efficiency genetic transformation of maize by a mixture of pollen and exongenous DNA. Proc Nat Acad Sci USA 83:715–719

    Article  PubMed  CAS  Google Scholar 

  • Ozias-Akins P, Vasil IK (1985) Nutrition of plant tissue cultures. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Cell growth, nutrition, cytodifferentiation and cryopreservation, vol 2. Academic Press, New York, pp 129–147

    Google Scholar 

  • Pandey KK (1975) Sexual transfer of specific genes without gametic fusion. Nature 256:310–313

    Article  PubMed  CAS  Google Scholar 

  • Pandey KK (1977) Mentor pollen: possible role of wall-held pollen growth promoting substances in overcoming intra- and interspecific incompatibility. Genetica 47:219–229

    Article  Google Scholar 

  • Pandey KK (1983) Evidence for gene transfer by the use of sublethally irradiated pollen in Zea mays and theory of occurrence by chromosome repair through somatic recombination and gene conversion. Mol Gen Genet 191:358–365

    Article  CAS  Google Scholar 

  • Paszkowski J, Shillito RD, Saul M, Mandak V, Hohn T, Hohn B, Potrykus I (1984) Direct gene transfer to plants. EMBO J 3:2717–2722

    PubMed  CAS  Google Scholar 

  • Petit A, Delhaye S, Tempé J, Morel G (1970) Recherches sur le guanidines des tissues de crown-gall. Mise en évidence d’une relation biochimique spécifique entre les souches d’ Agrobacterium tumefaciens et les tumeurs qu’elles induisent. Physiol Veg 8:205–213

    CAS  Google Scholar 

  • Potrykus I (1990) Gene transfer to cereals: as assessment. Biotechnology 8:535–542

    Article  CAS  Google Scholar 

  • Potrykus I (2001) The ‘Golden Rice’ tale. In Vitro Cell Dev Biol Plant 37:93–100

    Google Scholar 

  • Potrykus I, Saul MW, Petruska J, Paszkowski J, Shillito RD (1985) Direct gene transfer to a graminaceous monocot. Mol Gen Genet 199:183–188

    Article  CAS  Google Scholar 

  • Power JB, Cummins SE, Cocking EC (1970) Fusion of isolated protoplasts. Nature 223:1016–1018

    Article  Google Scholar 

  • Raghavan V (1986) Embryogenesis in angiosperms. Cambridge University Press, Cambridge

    Google Scholar 

  • Ream W (1989) Agrobacterium tumefaciencs and interkingdom genetic exchange. Annu Rev Phytopathol 27:583–618

    Article  Google Scholar 

  • Reinert J (1958a) Untersüchungen über die Morphogenese an Gewebekulturen. Ber Deutsch Bot Ges 71:15

    Google Scholar 

  • Reinert J (1958b) Morphogenese und ihre Kontrolle an Gewebekulturen aus Karotten. Naturwiss 45:344–345

    Article  CAS  Google Scholar 

  • Reinert J (1959) Über die Kontrolle der Morphogenese und die Induktion von Adventivembryonen an Gewebekulturen aus Karotten. Planta 53:318–333

    Article  Google Scholar 

  • Reinert J (1963) Growth of single cells from higher plants on synthetic media. Nature 200:90–91

    Article  CAS  Google Scholar 

  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ (1988) Genetically transformed maize plants from protoplasts. Science 240:204–207

    Article  PubMed  CAS  Google Scholar 

  • Robbins WJ (1922) Cultivation of excised root tips and stem tips under sterile conditions. Bot Gaz (Chicago) 73:376–390

    Article  Google Scholar 

  • Routier JB, Nickell LG (1956) Cultivation of plant tissue. US patent 2,747,334

  • Sanford JC (2000) The development of the biolistic process. In Vitro Cell Dev Biol Plant 36:303–308

    Article  Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. J Part Sci Technol 5:27–37

    Article  CAS  Google Scholar 

  • Schacht H (1850) Entwicklungsgeschichte der Pflanzenembryo. Amsterdam

  • Schleiden MJ (1837) Einige Blicke aus die Entwicklungsgeschichte des vegetablischen Organismus bein den Phanerogamen. Arch Bwl Naturgeschchte III 1:289–320

    Google Scholar 

  • Schleiden MJ (1838) Beiträge zur Phytogenesis. Arch Anat Physiol Wiss Med (J Müller) pp 137–176

  • Schleiden MJ (1845) Über Amicis letzten Beitrag zur Lehre von der Befruchtung der Pflanzen. Flora 593–600

  • Schröder G, Waffenschmidt S, Weiler EW, Schröder J (1984) The T-region of Ti-plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138:387–391

    Article  PubMed  Google Scholar 

  • Schwann T (1839) Mikroscopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachstum des Thiere und Pflanzen. W Engelmann: Leipzig No 176

  • Shillito R (1999) Methods of genetic transformation: electroporation and polyethylene glycol treatment. In: Vasil IK (ed) Advances in cellular and molecular biology of plants. Molecular improvement of cereal crops, vol 5. Kluwer, Dordrecht, pp 9–20

    Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–131

    Google Scholar 

  • Skoog F, Tsui C (1948) Chemical control of growth and bud formation in tobacco stem segments and callus cultured in vitro. Am J Bot 35:782–787

    Article  CAS  Google Scholar 

  • Skoog F, Tsui C (1951) Growth substances and the formation of buds in plant tissues. In: Skoog F (ed) Plant growth substances. University of Wisconsin Press, Madison, pp 263–285

    Google Scholar 

  • Smith EF, Townsend CO (1907) A plant tumor of bacterial origin. Science 25:671–673

    Article  PubMed  Google Scholar 

  • Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–518

    Article  PubMed  CAS  Google Scholar 

  • Staba EJ (1980) Plant tissue culture as a source of biochemicals. CRC Press, Boca Raton

    Google Scholar 

  • Steward FC, Pollard JK (1958) C14-proline and hydroxyproline in the protein metabolism of plants: an episode in the relation of metabolism to cell growth and morphogenesis. Nature 82:828–832

    Article  Google Scholar 

  • Steward FC, Mapes MO, Smith J (1958a) Growth and organized development of cultured cells. I. Growth and division in freely suspended cells. Am J Bot 45:693–703

    Article  Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958b) Growth and organized development of cultured cells. II Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Article  Google Scholar 

  • Strasberger E (1884) Neue Untersuchungen über den Befruchtungsvorgang bein den Phanerogamen. Jena

  • Takebe I, Otsuki Y, Aoki S (1968) Isolation of tobacco mesophyll cells in intact and active state. Plant Cell Physiol 9:115–124

    Google Scholar 

  • Takebe I, Labib G, Melchers G (1971) Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwiss 58:318–320

    Article  Google Scholar 

  • Thimann KV (1935) On the plant hormone produced by Rhizopus suinus. J Biol Chem 109:279–291

    CAS  Google Scholar 

  • Thomashow MF, Hugly S, Buchholz WG, Thomashow LS (1986) Molecular basis for the auxin-independent phenotype of crown gall tumor tissues. Science 231:616–618

    Article  PubMed  CAS  Google Scholar 

  • Thorpe TA (ed) (1995) In vitro embryogenesis in plants. Kluwer, Dordrecht

    Google Scholar 

  • Trelease S, Trelease HM (1933) Physiologically balanced culture solutions with stable hydrogen ion concentration. Science 78:438–439

    Article  PubMed  CAS  Google Scholar 

  • Tulecke W, Nickell LG (1959) Production of large amounts of plant tissue by submerged culture. Science 130:863–864

    Article  PubMed  Google Scholar 

  • Tzfira T, Citovsky V (eds) (2008) Agrobacterium: from biology to biotechnology. Springer, New York

    Google Scholar 

  • Uspenski EE, Uspenskaia WJ (1925) Reinkultur und ungeschlechtliche Fortpflanzung der Volvox minor und Volvox globator in einer synthetischen Nährlösung. Z Bot 17:273–308

    Google Scholar 

  • Van Haute E, Joos H, Maes M, Warren G, Van Montagu M, Schell J (1983) Integeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciens. EMBO J 2:411–417

    PubMed  Google Scholar 

  • Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacteium tumefaciens essential for crown gall-inducing ability. Nature 252:169–170

    Article  PubMed  Google Scholar 

  • Van Larebeke N, Genetello C, Schell J, Schilperoort RA, Hermans AK, Hernalsteens JP, Van Montagu M (1975) Acquisition of tumour-inducing ability by non-oncogenic agrobacteria as a result of plasmid transfer. Nature 255:742–743

    Article  PubMed  Google Scholar 

  • Van Overbeek J, Conklin ME, Blakeslee AF (1941) Factors in coconut milk essential for growth and development of very young Datura embryos. Science 94:350–351

    Article  Google Scholar 

  • Vasil IK (1959) Nucleic acids and the survival of excised anthers in vitro. Science 129:1487–1488

    Article  PubMed  CAS  Google Scholar 

  • Vasil IK (1976) The progress, problems and prospects of plant protoplast research. Adv Agron 28:119–160

    Article  CAS  Google Scholar 

  • Vasil IK (ed) (1984) Cell culture and somatic cell genetics of plants. Laboratory procedures and their applications, vol 1. Academic Press, New York

  • Vasil IK (ed) (1999) Advances in cellular and molecular biology of plants. Molecular improvement of cereal crops, vol 5. Kluwer, Dordrecht

  • Vasil IK (2002) The wanderings of a botanist. In Vitro Cell Dev Biol Plant 38:383–395

    Article  Google Scholar 

  • Vasil IK (2003a) The science and politics of plant biotechnology—a personal perspective. Nat Biotechnol 21:849–851

    Article  PubMed  CAS  Google Scholar 

  • Vasil IK (ed) (2003b) Plant biotechnology 2002 and beyond. Kluwer, Dordrecht

    Google Scholar 

  • Vasil IK (2005) The story of transgenic cereals: the challenge, the debate, and the solution—a historical perspective. In Vitro Cell Dev Biol Plant 41:577–583

    Article  Google Scholar 

  • Vasil IK (2007) Molecular genetic improvement of cereals: transgenic wheat (Triticum aestivum L.). Plant Cell Rep 26:1133–1154

    Article  PubMed  CAS  Google Scholar 

  • Vasil V, Hildebrandt AC (1965a) Growth and tissue formation from single, isolated tobacco cells in microculture. Science 147:1454–1455

    Article  PubMed  Google Scholar 

  • Vasil V, Hildebrandt AC (1965b) Differentiation of tobacco plants from single, isolated cells in microcultures. Science 150:889–892

    Article  PubMed  Google Scholar 

  • Vasil IK, Hildebrandt AC (1966a) Variations of morphogenetic behavior in plant tissue cultures. I. Cichorium endivia. Am J Bot 53:860–869

    Article  Google Scholar 

  • Vasil IK, Hildebrandt AC (1966b) Variations of morphogenetic behavior in plant tissue cultures. Petroselinum hortense. Am J Bot 59:869–874

    Article  Google Scholar 

  • Vasil IK, Hildebrandt AC (1966c) Growth and chlorophyll production in plant callus tissues grown in vitro. Planta 68:69–72

    Article  CAS  Google Scholar 

  • Vasil V, Hildebrandt AC (1967) Further studies on the growth and differentiation of single, isolated cells of tobacco in vitro. Planta 75:139–151

    Article  Google Scholar 

  • Vasil IK, Thorpe TA (eds) (1994) Plant cell and tissue culture. Kluwer, Dordrecht

    Google Scholar 

  • Vasil IK, Vasil V (1972) Totipotency and embryogenesis in plant cell and tissue cultures. In Vitro 8:117–127

    PubMed  CAS  Google Scholar 

  • Vasil V, Vasil IK (1980) Isolation and culture of cereal protoplasts. II. Embryogenesis and plantlet formation from protoplasts of Pennisetum americanum. Theor Appl Genet 56:97–99

    Article  Google Scholar 

  • Vasil V, Vasil IK (1982) The ontogeny of somatic embryos of Pennisetum americanum (L.) K. Schum.: in cultured immature embryos. Bot Gaz 143:454–465

    Article  Google Scholar 

  • Vasil IK, Vasil V (1992) Advances in cereal protoplast research. Physiol Plant 85:279–283

    Article  CAS  Google Scholar 

  • Vasil V, Lu C, Vasil IK (1985) Histology of somatic embryogenesis in cultured embryos of maize (Zea mays L.). Protoplasma 127:1–8

    Article  Google Scholar 

  • Virchow R (1858) Die Cellullarpathologie im ihrer Begrüngung und physiologische und pathologische Gewebelehre. A Hirschwald, Berlin

    Google Scholar 

  • Vöchting H (1878) Über Oganbildung im Pflanzenreich. Max Cohen, Bonn

    Google Scholar 

  • Waris H (1957) A striking morphogenetic effect of amino acid in seed plant. Suom Kemistil 30B:121

    Google Scholar 

  • Waris H (1959) Neomorphosis in seed plants induced by amino acids. I. Oenanthe aquatica. Physiol Plant 15:736–752

    Article  Google Scholar 

  • Went FW (1928) Wuchstoff und Wachstum. Rec Trav Bot Neerl 25:1–116

    Google Scholar 

  • White PR (1932) Plant tissue cultures: a preliminary report of results obtained in the culturing of certain plant meristems. Arch Exp Zellforsch Besonders Gewebezücht 12:602–620

    Google Scholar 

  • White PR (1934a) Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol 9:585–600

    PubMed  CAS  Google Scholar 

  • White PR (1934b) Multiplication of the viruses of tobacco and Aucuba mosaics in growing excised tomato root tips. Phytopathology 24:1003–1011

    Google Scholar 

  • White PR (1939) Potentially unlimited growth of excised plant callus in an artificial nutrient. Am J Bot 26:59–64

    Article  Google Scholar 

  • White PR (1943) A handbook of plant tissue culture. Jacques Cattell Press, Tempe

    Google Scholar 

  • White PR (1963) The cultivation of animal and plant cells, 2nd edn. The Ronald Press, New York

    Google Scholar 

  • White PR, Braun AC (1942) A cancerous neoplasm of plants. Autonomous bacteria-free crown-gall tissue. Proc Am Phil Soc 86:467–469

    Google Scholar 

  • White PR, Grove AR (eds) (1965) Plant tissue culture. McCutchan, Berkeley, California

  • Willmitzer L, de Beuckeleer M, Lemmers M, Van Montagu M, Schell J (1980) DNA from Ti plasmid present in nucleus and absent from plastids of crown gall plant cells. Nature 287:359–361

    Article  CAS  Google Scholar 

  • Xu Z, Li J, Xue Y, Yang W (eds) (2007) Biotechnology and sustainable agriculture 2006 and beyond. Springer, Dordrecht

    Google Scholar 

  • Zaenen I, Van Larebeke N, Teuchy H, Van Montagu M, Schell J (1974) Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J Mol Biol 86:109–127

    Article  PubMed  CAS  Google Scholar 

  • Zhao T, Zhao S, Chen H, Zhao Q, Hu Z, Hou B, Xia G (2006) Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep 25:1199–1204

    Article  PubMed  CAS  Google Scholar 

  • Zilberstein A, Schuster S, Flaishman M, Pnini-Cohen S, Koncz C, Mass C, Schell J, Eyal L (1994) Stable transformation of spring wheat cultivars. In: Fourth international congress of plant molecular biology, Amsterdam (Abstract 2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indra K. Vasil.

Additional information

Communicated by P. Kumar.

Adapted from the Opening Plenary Address to the international conference on “Plants for Human Health in the Post-Genome Era”, held 26–29 August 2007, at Helsinki, Finland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil, I.K. A history of plant biotechnology: from the Cell Theory of Schleiden and Schwann to biotech crops. Plant Cell Rep 27, 1423–1440 (2008). https://doi.org/10.1007/s00299-008-0571-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0571-4

Keywords

Navigation