Skip to main content
Log in

Overexpression ofGbERF confers alteration of ethylene-responsive gene expression and enhanced resistance toPseudomonas syringae in transgenic tobacco

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

GbERF belongs to the ERF (ethylene responsive factor) family of transcription factors and regulates the GCC-box containing pathogen-related (PR) genes in the ethylene signal transduction pathway. To study the function of GbERF in the process of biotic stress, transgenic tobacco plants expressingGbERF were generated. Overexpression ofGbERF did not change transgenic plant’s phenotype and endogenous ethylene level. However, the expression profile of some ethylene-inducible GCC-box and non-GCC-box containing genes was altered, such asPR1b, PR2, PR3, PR4,Osmotin, CHN50, ACC oxidase and ACC synthase genes. These data indicate that the cotton GbERF could act as a transcriptional activator or repressor to regulate the differential expression of ethylene-inducible genes via GCC and non-GCCcis-elements. Moreover, the constitutive expression ofGbERF in transgenic tobacco enhanced the plant’s resistance toPseudomonas syringae pvtabaci infection. In conclusion,GbERF mediates the expression of a wide array ofPR and ethylene-responsive genes and plays an important role in the plant’s response to biotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ACC:

1-aminocyclopropane carboxylic aicd

ACO:

ACC oxidase

ACS:

ACC synthase

ERF:

ethylene responsive factor

PCR:

polymerase chain reaction

RT:

reverse transcription

References

  • Allen M D, Yamasaki K, Ohme-Takagi M, Tateno M and Suzuki M 1998 A novel mode of DNA recognition by a Β-sheet revealed by the solution structure of the binding domain in complex with DNA;EMBO J. 17 5485–5496

    Article  Google Scholar 

  • Berrocal-Lobo M, Molina A and Solano R 2002 Constitutive expression of Ethylene Response Factor1 inArabidopsis confers resistance to several necrotrophic fungi;Plant J. 29 23–32

    Article  PubMed  CAS  Google Scholar 

  • Chakravarthy S, Robert P, D’Ascenzo M D, Fobert P R, Després C and Martin G B 2003 The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC boxcis elements;Plant Cell 15 3033–3050

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Song F, Goodman R M and Zheng Z 2006 Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress;J. Plant Physiol. (in press)

  • Fischer U and Dröge-Laser W 2004 Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to Tobacco mosaic virus;Mol. Plant-Microbe Interact. 17 1162–1171

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto S Y, Ohta M, Usui A, Shinshi H and Ohme-Takagi M 2000Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression;Plant Cell 12 393–404

    Article  PubMed  CAS  Google Scholar 

  • Gu Y Q, Yang C M, Thara V K, Zhou J M and Martin G B 2000 Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase;Plant Cell 12 771–786

    Article  PubMed  CAS  Google Scholar 

  • Gu Y Q, Wildermuth M C, Chakravarthy S, Loh Y T, Yang C, He X, Han Y and Martin G B 2002 Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed inArabidopsis;Plant Cell 14 817–831

    Article  PubMed  CAS  Google Scholar 

  • Guang V Z and Jacqueline K B 2003 Profiling ethylene-regulated gene expression inArabidopsis thaliana by microarray analysis;Plant Mol. Biol. 53 117–131

    Article  Google Scholar 

  • He P, Warren R F, Zhao T, Shan L, Zhu L, Tang X and Zhou J M 2001 Overexpression of Pti5 in tomato potentiates pathogeninduced denfense gene and enhances disease resistance toPseudomonas syringae pv.Tomato;Mol. Plant-Microbe Interact. 14 1453–1457

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch P, Hooykaas P and Schilperoort R 1983 A binary plant vector strategy based on separation of vir and T-region of theAgrobacterium tumefaciens Ti-plasmid;Nature (London) 303 179–180

    Article  CAS  Google Scholar 

  • Huang Z J, Zhang Z J, Zhang X L, Zhang H B, Huang D F and Huang R F 2004 Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes;FEBS Lett. 573 110–116

    Article  PubMed  CAS  Google Scholar 

  • Jia Y and Martin G B 1999 Rapid transcript accumulation of pathogenesis-related genes during an incompatible interaction in bacterial speck disease-resistant tomato plants;Plant Mol. Biol. 40 455–465

    Article  PubMed  CAS  Google Scholar 

  • Kende H 1993 Ethylene biosynthesis;Annu. Rev. Plant Physiol. Plant Mol. Biol. 44 283–307

    Article  CAS  Google Scholar 

  • Kizis D, Lumvreras V and Pages M 2001 Role of AP2/EREBP transcription factors in gene regulation during abiotic stress;FEBS Lett. 498 187–189

    Article  PubMed  CAS  Google Scholar 

  • Kumar V and Spencer M E 1992 Nucleotide sequence of an osmotin cDNA from theNicotiana tabacum cv. white burley generated by the polymerase chain reaction;Plant Mol. Biol. 18 621–622

    Article  PubMed  CAS  Google Scholar 

  • Linthorst H J, van Loon L C, van Rossum C M, Mayer A, Bol J F, van Roekel J S, Meulenhoff E J and Cornelissen B J 1990 Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco;Mol. Plant-Microbe Interact. 3 252–258

    PubMed  CAS  Google Scholar 

  • Linthorst H J, Danhash N, Brederode F T, van Kan J A, de Wit P J and Bol F 1991 Tobacco and tomato PR proteins homologous to win and pro-hevein lack the ‘hevein’ domain;Mol. Plant-Microbe Interact. 4 586–592

    PubMed  CAS  Google Scholar 

  • Liu J Z, Li N, Yang S E and Kung S D 1998 Full-length nucleotide sequence of the tobacco cultivar SR1 encoding 1-aminocyclopropane-1-carboxylate synthase;Plant Physiol. 118 1534

    Google Scholar 

  • Martin G B, Brommonschenkel S H, Chunwongse J, Frary J, Ganal A, Spivey M W, Wu R, Earle T and Tanksley S D 1993 Map-based cloning of a protein kinase gene conferring disease resistance in tomato;Science 262 1432–1436

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka M, Yamamoto N, Kano-Murakami Y, Tanaka Y, Ozeki Y, Hirano H, Kagawa H, Oshima M and Ohashi Y 1987 Classification and structural comparison of full-length cDNAs for pathogenesis-related proteins;Plant Physiol. 85 942–946

    Article  PubMed  CAS  Google Scholar 

  • Melchers L S, Apothekerde G M, van der Knaap J A, Ponstein A S, Sela-Buurlage M B, Bol J F, Cornelissen B J, van den Elzen P J and Linthorst H J 1994 A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity;Plant J. 5 469–480

    PubMed  CAS  Google Scholar 

  • Ohme-Takagi M and Shinshi H 1995 Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element;Plant Cell 7 173–182

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Ohme-Takagi M and Shinshi H 2000 Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions;Plant J. 22 29–38

    Article  PubMed  CAS  Google Scholar 

  • Park J M, Park C J, Lee S B, Ham B K, Shin R and Paek K H 2001 Overexpression of the tobaccoTsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco;Plant Cell 13 1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Qin J, Zhao J Y, Zuo K J, Cao Y F, Ling H, Sun X F and Tang K X 2004 Isolation and characterization of an ERF-like gene fromGossypium barbadense;Plant Sci. 167 1383–1389

    Article  CAS  Google Scholar 

  • Reichmann J L and Meyerowitz E M 1998 The AP2/EREBP family of plant transcription factors;Biol. Chem. 379 633–664

    Article  Google Scholar 

  • Reichmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D and Sherman B K 2000Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes;Science 290 2105–2110

    Article  Google Scholar 

  • Sambrook J, Fritsch E F and Maniatis T 1989Molecular cloning: A laboratory manual, 2nd edition (New York: Cold-Spring Harbor Laboratory Press)

    Google Scholar 

  • Schenk P M, Kazan K, Wilson I, Anderson J P, Richmond T, Somerville S C and Manners J M 2000 Coordinated plant defense responses inArabidopsis revealed by microarray analysis;Proc. Natl. Acad. Sci. USA 97 11655–11660

    Article  PubMed  CAS  Google Scholar 

  • Shinshi H, Neuhas J M, Ryals J and Meins F 1990 Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain;Plant Mol. Biol. 14 357–368

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Charles T M and Newton R J 2005 Overexpression of the pepper transcription factorCaPF1 in transgenic Virginia pine (Pinus virginiana Mill.) confers multiple stress tolerance and enhances organ growth;Plant Mol. Biol. 59 603–617

    Article  PubMed  CAS  Google Scholar 

  • Wang K L C, Li H and Ecker J R 2002 Ethylene biosynthesis and signaling networks;Plant Cell 14 S131-S151

    PubMed  CAS  Google Scholar 

  • Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D and Huang R 2004 Ectopic overexpression of tomatoJERF3 in tobacco activates downstream gene expression and enhances salt tolerance;Plant Mol. Biol. 55 183–192

    Article  PubMed  CAS  Google Scholar 

  • Ward E R, Uknes S J, Williams S C, Dincher S S, Wiederhold D L, Alexander D C, Ahl-Goy P, Métraux J P and Ryals J A 1991 Coordinate gene activity in response to agents that induce systemic acquired resistance;Plant Cell 3 1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Wu K Q, Tian L N, Hollingworth J, Brown D C W and Miki B 2002 Functional analysis of tomato Pti4 inArabidopsis;Plant Physiol. 128 30–37

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Tang X and Martin G B 1997 The Pto kinase conferring resistance to tomato bacterial speck disease with proteins that bind a cis-element of pathogenesis-related genes;EMBO J. 16 3207–3218

    Article  PubMed  CAS  Google Scholar 

  • Zuo K J, Wang J, Wu W S, Chai Y R, Sun X F and Tang K X 2005 Isolation and characterization differentially expressed ESTs from sea-island cotton (Gossypium barbadense L.) infected withVerticillium pathogens;Mol. Biol. 39 214–223

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kexuan Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, J., Zuo, K., Zhao, J. et al. Overexpression ofGbERF confers alteration of ethylene-responsive gene expression and enhanced resistance toPseudomonas syringae in transgenic tobacco. J Biosci 31, 255–263 (2006). https://doi.org/10.1007/BF02703918

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703918

Keywords

Navigation