Skip to main content
Log in

Regeneration of transgenic plants from two indica rice (Oryza sativa L.) cultivars using shoot apex explants

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

We have established a reproducible procedure for transformation of shoot apices and regeneration of transgenic plants for two indica rice cultivars, white ponni (WP) and Pusa Basmathi 1 (PB 1). Four-day-old shoot apex explants were transformed by cocultivation with Agrobacterium tumefaciens strain EHA 101 harbouring a binary plasmid pRIT1. The vector contained an improved hygromycin phosphotransferase (hpt) gene for hygromycin resistance driven by actin 1 promoter and the reporter gene β-glucuronidase intron (INT-GUS) controlled by CaMV 35S promoter. Rice shoots were induced on media containing 0.1 mg/l napthalene acetic acid (NAA), 1.0 mg/l kinetin (kn), 1.0 mg/l N 6-benzyleaminopurin (BAP), 300 mg/l casaminoacid, 500 mg/l proline, 50 mg/l hygromycin and 500 mg/l cefotaxime. Transgenic plants were raised in pots and seeds were collected. Histochemical and polymerase chain reaction (PCR) analyses of field established transgenic rice plants and their offsprings confirmed the presence of GUS gene. Integration of T-DNA into the genome of putative transgenics was further confirmed by southern analysis. The transformation efficiency of WP was found to be ranging from 5.6 to 6.2% whereas in the case of PB1, it was from 7 to 8%. Progeny analysis of these plants showed a pattern of classical Mendelian inheritance for both hpt and GUS gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAP:

N 6-Benzyleaminopurine

CaMV 35S:

Cauliflower mosaic virus promoter

CB-INT:

Catalase bean intron

GUS:

β-Glucuronidase

hpt:

Hygromycin phosphotransferase

kn:

Kinetin

References

  • Abedinia M, Henry RJ, Blakeney AB, Lewin L (1997) An efficient transformation system for the Australian rice cultivar, Jarrah. Aust J Plant Physiol 24:133–141

    CAS  Google Scholar 

  • Ahmad A, Zhong H, Wang W, Sticklen MB (2002) Shoot apical meristem: in vitro regeneration and morphogenesis in wheat (Triticum aestivum L). In Vitro Cell Dev Biol Plant 38:163–167

    Article  Google Scholar 

  • Aldemita RR, Hodges TK (1996) Agrobacterium tumefaciens mediated transformation of Japonica and Indica rice varieties. Planta 199:612–617

    Article  CAS  Google Scholar 

  • Bao PH, Granata S, Castiglione S, Wang G, Giordani C, Cuzzoni E, Damiani G, Bandi C, Datta SK, Datta K, Potrykus I, Callegarin A, Sala F (2001) Genomic changes in transgenic rice (Oryza sativa L.) plants produced by infecting calli with Agrobacterium tumefaciens. Plant Cell Rep 20:325–330

    Article  CAS  Google Scholar 

  • Battraw M, Hall TC (1990) Histochemical analysis of CaMV promoter ß-glucuronidase gene expression in transgenic rice plants. Plant Mol Biol 15:527–538

    Article  PubMed  CAS  Google Scholar 

  • Bhalla PL, Singh MB (2006) Molecular control of stem cell maintenance in shoot apical meristem. Plant Cell Rep 25:249–256

    Article  PubMed  CAS  Google Scholar 

  • Bidney D, Scelonge C, Martich J, Burrus M, Sims L, Huffman O (1992) Microprojectile bombardment of plant tissue increase transformation frequency by Agrobacterium tumefaciens. Plant Mol Biol 18:301–313

    Article  PubMed  CAS  Google Scholar 

  • Bilang R, Iida S, Peterson A, Potrykus I, Paszkowski J (1991) The 3′-terminal region of the hygromycin-B-resistance gene is important for its activity in Escherichia Coli and Nicotiana tabacum. Gene 100:247–250

    Article  PubMed  CAS  Google Scholar 

  • Chilton MD, Currier TC, Farrand SK, Bendich AJ, Gordon MP, Nester EW (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumours. Proc Natl Acad Sci USA 71:3672–3676

    Article  PubMed  CAS  Google Scholar 

  • Cho MJ, Choi HW, Okamoto D, Zhang S, Lemaux PG (2003) Expression of green fluorescent protein and its inheritance in transgenic oat plants generated from shoot meristematic cultures. Plant Cell Rep 21:467–474

    PubMed  CAS  Google Scholar 

  • Christou P (1992) Genetic transformation of crop plants using micro projectile bombardment. Plant J 2:275–281

    Article  CAS  Google Scholar 

  • Christou P (1997) Rice transformation: bombardment. Plant Mol Biol 35:197–203

    Article  PubMed  CAS  Google Scholar 

  • Datta SK, Datta K, Soltanifar N, Donn G, Potrykus I (1992) Herbicide-resistant indica rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Mol Biol 20(4):619–629

    Article  PubMed  CAS  Google Scholar 

  • Devi P, Zhong H, Sticklen MB (2000) In vitro morphogenesis of Pearl millet (Pennisetum glaucum L.) efficient production of multiple shoots and inflorescensces from shoot apices. Plant Cell Rep 56:546–550

    Article  Google Scholar 

  • Dong J, Teng W, Buchholz WG, Hall TC (1996) Agrobacterium mediated transformation of Javanica rice. Mol Breed 2:267–276

    Article  CAS  Google Scholar 

  • Gould J, Devey M, Hasegawa O, Ulian EC, Peterson G, Smith RH (1991) Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol 95:426–434

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposans of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture methods for growing plants without soil. California Agri Exp Station Berkeley Circular No. 347

  • Hood EE, Helmer GL, Fraley ET, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiB0542 outside of T-DNA. J Bacteriol 168:1291–1301

    PubMed  CAS  Google Scholar 

  • Hussey G, Johnson RD, Warren S (1989) Transformation of meristematic cells in the shoot apex of cultured pea shoots by Agrobacterium tumefaciens and A. rhizogenes. Protoplasma 148:101–105

    Article  Google Scholar 

  • Ignacimuthu S, Arockiasamy S (2006) Agrobacterium-mediated transformation of an elite indica rice for insect resistance. Curr Sci 90:829–835

    CAS  Google Scholar 

  • Ignacimuthu S, Arockiasamy S, Terada R (2000) Genetic transformation of rice: current status and future prospects. Curr Sci 79:186–195

    Google Scholar 

  • Jefferson RA (1987) Assaying Chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Khanna HK, Raina SK (1999) Agrobacterium-mediated transformation of indica rice cultivars using binary and superbinary vectors. Aust J Plant physiol 26:311–324

    Article  CAS  Google Scholar 

  • Khush GS (1997) Origin dispersal cultivation and variation of rice. Plant Mol Biol 35:25–34

    Article  PubMed  CAS  Google Scholar 

  • Kishore NS, Visarada KBRS, Lakshmi YA, Pashupatinath E, Rao SV, Seetharama N (2006) In vitro culture methods in sorghum with shoot tip as the explant material. Plant Cell Rep 25:174–182

    Article  CAS  Google Scholar 

  • Labra M, Savini C, Bracale M, Pehucchi N, Colombo L, Bardini M, Sala F (2001) Genetic transformation and hybridization: Genomic changes in transgenic rice (Oryza sativa L.) plants produced by infecting calli with Agrobacterium tumefaciens. Plant Cell Rep 20:325–330

    Article  CAS  Google Scholar 

  • Latha AM, Rao KV, Reddy TP, Reddy VD (2006) Development of transgenic pearl millet (Pennisetum glaucum(L.) R. Br.) plants resistant to downy mildew. Plant Cell Rep 25:927–935

    Article  PubMed  CAS  Google Scholar 

  • Lowe K, Ross M, Bond D, Gordon-Kamm B (1995) Germline transformation of maize following manipulation of chimeric shoot meristems. Biotechnology 13:677–682

    Article  CAS  Google Scholar 

  • Lu BR (1999) Taxonomy of the genus Oryza (Poaceae): historical perspective and current status. Internatl Rice Res Notes 24:4–8

    Google Scholar 

  • May GD, Afza R, Mason HS, Wiecko A, Novak FJ, Arntzen CJ (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium mediated transformation. Biotechnology 13:486–492

    Article  CAS  Google Scholar 

  • McElroy D, Blowers AD, Jenes B, Wu R (1991) Construction of expression vectors based on the rice actin1 (Act1) 5′ region for use in monocot transformation. Mol Gen Genet 231:150–160

    Article  PubMed  CAS  Google Scholar 

  • Mohanty A, Sharma NP, Tyagi AK (1999) Agrobacterium mediated high frequency transformation of an elite Indica rice variety Pusa Basmati1 and transmission of the transgenes to R2 progeny. Plant Sci 147:127–137

    Article  CAS  Google Scholar 

  • Morel G (1972) Morphogenesis of stem apical meristem cultivated in vitro application to clonal propagation. Phytomorphol 22:265–277

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakano A, Suzuki G, Yamamoto M, Turnbull K, Rahman S, Mukai Y (2005) Rearrangements of large-insert T-DNAs in transgenic rice. Mol Genet Genomics 273:123–129

    Article  PubMed  CAS  Google Scholar 

  • Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a ß-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol 31:805–813

    CAS  Google Scholar 

  • Park SH, Pinson SRM, Smith RH (1996) T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant Mol Biol 32:1135–1148

    Article  PubMed  CAS  Google Scholar 

  • Potrykus I (1990) Gene transfer to cereals: an assessment. Biotechnology 8:535–542

    Article  CAS  Google Scholar 

  • Ramanathan V, Veluthambi K (1995) Transfer of non-T-DNA portions of Agrobacterium tumefaciens Ti Plasmid pTiA6 from the left terminus of TL-DNA. Plant Mol Biol 28:1149–1154

    Article  PubMed  CAS  Google Scholar 

  • Rashid H, Yokoi S, Toriyama K, Hinata K (1996) Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Rep 15:727–730

    Article  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology, 2nd edn. Kluwer, The Netherlands, pp 1–8

    Google Scholar 

  • Rueb S, Hensgens LAM (1989) Improved histochemical staining for ß-D-glucuronidase activity in monocotyledonous plants. Rice Genet News Lett 6:168–169

    Google Scholar 

  • Schrammeijer B, Sijimons PC, Van den Elzen PJM, Hoekema A (1990) Meristem transformation of sunflower via Agrobacterium. Plant Cell Rep 9:55–60

    Article  CAS  Google Scholar 

  • Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–518

    Article  PubMed  CAS  Google Scholar 

  • Supertana P, Shimizu T, Shioiri H, Nogawa M, Nozue M, Kojima M (2005) Development of simple and efficient in planta transformation method for rice (OryzasativaL.) using Agrobacterium tumefaciens. J Biosci Bioeng 100:391–397

    Article  CAS  Google Scholar 

  • Tanaka A, Mita S, Ohta S, Kyuozuka J, Shimamoto K, Nakamura K (1990) Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Nucleic Acids Res 18:6767–6770

    Article  PubMed  CAS  Google Scholar 

  • Terada R, Asao H, Iida S (2004) A large scale Agrobacterium-mediated transformation procedure with a strong positive–negative selection for gene targeting in rice (Oryza sativa L.). Plant Cell Rep 22:653–659

    Article  PubMed  CAS  Google Scholar 

  • Terada R, Shimamoto K (1990) Expression of CaMV 35S-GUS gene in transgenic rice plants. Mol Gen Genet 220:389–392

    Article  CAS  Google Scholar 

  • Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030–1034

    Article  PubMed  CAS  Google Scholar 

  • Toki S (1997) Rapid and efficient Agrobacterium mediated transformation in rice. Plant Mol Biol Rep 15:16–21

    Article  CAS  Google Scholar 

  • Toriyama K, Hinata K (1985) Cell suspension and protoplast culture in rice. Plant Sci 41:179–183

    Article  CAS  Google Scholar 

  • Toriyama K, Arimoto Y, Uchimiya H, Hinata K (1988) Transgenic rice plants after direct gene transfer into protoplasts. Biotechnology 6:1072–1074

    Article  CAS  Google Scholar 

  • Ulian E, Smith RH, Gould J, McKright TD (1988) Transformation of plants via the shoot apex. In Vitro Cell Dev Biol 24:951–954

    Article  Google Scholar 

  • Uze M, Wunn J, Kaerlas JP, Potrykus I, Sautter C (1997) Plasmalysis of precultured immature embryos improves Agrobacterium mediated gene transfer to rice (Oryza sativa L.). Plant Sci 130:87–95

    Article  CAS  Google Scholar 

  • Wang MB, Upadhyaya NM, Brettell RIS, Waterhouse PM (1997) Intron mediated improvement of selectable marker gene for plant transformation via Agrobacterium tumefaciens. J Genet Breed 51:325–334

    CAS  Google Scholar 

  • Zhang S, Zhong H, Sticklen MB (1996) Production of multiple shoots from shoot apical meristems of oat (Avena sativa L.). J Plant Physiol 148:667–671

    CAS  Google Scholar 

  • Zhong H, Srinivasan C, Sticklen MB (1992a) Morphogenesis of corn (Zea mays L.) in vitro I. Formation of multiple shoot clumps and somatic embryos from shoot tips. Planta 187:490–497

    CAS  Google Scholar 

  • Zhong H, Wang W, Sticklen MB (1998) In vitro morphogenesis of Sorghum bicolor (L) Moench: efficient plant regeneration from shoot apices. J Plant Physiol 153:719–726

    CAS  Google Scholar 

  • Zimmerman TW, Scorza R (1996) Genetic transformation through the use of hyperhydric tobacco meristems. Mol Breed 20:73–80

    Google Scholar 

Download references

Acknowledgments

We thank Dr. R. Terada, National Institute of Basic Biology, Japan, for providing Agrobacterium strain and a binary vector and Professor K. Veluthambi, Madurai Kamaraj University, Madurai, India, for pIG221 vector and for helping us to carry out some of the experiments in his laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ignacimuthu.

Additional information

Communicated by P. Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arockiasamy, S., Ignacimuthu, S. Regeneration of transgenic plants from two indica rice (Oryza sativa L.) cultivars using shoot apex explants. Plant Cell Rep 26, 1745–1753 (2007). https://doi.org/10.1007/s00299-007-0377-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0377-9

Keywords

Navigation