Skip to main content
Log in

Molecular characterization of marker-free transgenic lines of indica rice that accumulate carotenoids in seed endosperm

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

A single Agrobacterium strain harbouring two binary plasmids was successfully used for the first time to develop a marker-free transgenic rice of improved nutritional value. Sixty-eight T0 co-transformants were obtained in three indica rice cultivars—two popular high-yielding Bangladeshi varieties (BR28 and BR29), and one high-iron rice cultivar (IR68144). Marker-free lines were obtained from 14 out of 24 selected co-transformants screened in the T1 generation. The accumulation of total carotenoids in polished T2 rice seeds of the primary transgenic VPBR29-17-37 reached levels of up to 3.0 μg/g, with the level of β-carotene reaching 1.8 μg/g. In the cultivars BR28 and IR68144, total carotenoid levels in the transformants reached 2.0 μg/g of polished rice seeds. The levels of lutein and other carotenoids in the seeds were also significantly enhanced. T1 plants obtained from primary transgenics with simple gene-integration patterns tended to have a lower carotenoid content than the original parental lines. This study describes the development of marker-free transgenic rice lines containing high levels of carotenoids, and addresses the relationship between the rearrangement of transgenes and the presence of metabolic end products in transgenic rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Breitler J, Meynard D, Boxtel J, Royer M, Bonnot F, Cambillau L, Guiderdoni E (2004) A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L). Transgenic Res 13:271–278

    Article  PubMed  CAS  Google Scholar 

  • Cotsaftis O, Sallaud C, Breitler JC, Meynard D, Greco R, Pereira A, Guiderdoni E (2002) Transposon-mediated generation of T-DNA and maker free rice plants expressing a Bt endotoxin gene. Mol Breed 10:165–180

    Article  CAS  Google Scholar 

  • Daley M, Knauf VC, Summerfelt KR, Turner JC (1998) Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep 17:489–496

    Article  CAS  Google Scholar 

  • Datta SK, Peterhans A, Datta K, Potrykus I (1990) Genetically engineered fertile Indica-rice plants recovered from protoplasts. Biotechnology 8:736–740

    Article  CAS  Google Scholar 

  • Datta K, Koukolíková-Nicola Z, Baisakh N, Oliva N, Datta SK (2000) Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor Appl Genet 100:832–839

    Article  CAS  Google Scholar 

  • Datta K, Baisakh N, Oliva N, Torrizo L, Abrigo E, Tan J, Rai M, Rehana S, Al-Babili S, Beyer P, Potrykus I, Datta S (2003a) Bioengineered ’ goldenindica rice cultivar with β-carotene metabolism in the endosperm with hygromycin and mannose selection systems. Plant Biotechnol J 1:81–90

    Article  CAS  Google Scholar 

  • Datta SK, Chandel G, Tu J, Baisakh N, Datta K (2003b) Engineering of Bt transgenic rice for insect pest protection. In: Metz M (ed) Bacillus thuringienesis: a cornerstone of modern agriculture (Part III). Food Products, Binghamton, pp 77–91

    Google Scholar 

  • DeBlock M, DeBrouwer D (1991) 2 T-DNAs co-transformed into Brassica napus by double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet 82:257–263

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153

    Article  PubMed  CAS  Google Scholar 

  • Depicker A, Herman L, Jacobs S, Schell J, van Montagu M (1985) Frequency of simultaneous transformation with different T-DNAs and their relevance to the A grobacterium-plant cell interaction. Mol Gen Genet 201:477–484

    Article  CAS  Google Scholar 

  • Ducreux LJM, Morris WL, Hedley PE, Sheperd T, Davies HV, Millam S, Taylor MA (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced level of β-carotene and lutein. J Expt Bot 56:81 – 89

    CAS  Google Scholar 

  • Edward K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  PubMed  Google Scholar 

  • Hellens R, Mullineaux P, Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–228

    Article  PubMed  CAS  Google Scholar 

  • Hoa TTC, Al-Babili S, Schaub P, Potrykus I, Beyer P (2003) Golden indica and japonica rice lines amenable to deregulation. Plant Physiol 133:161–169

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Gilbertson LA, Adams TH, Malloy K, Reisenbigler EK, Birr DH, Snyder MW, Zhang Q, Luethy MH (2004) Generation of marker free transgenic maize by regular two right-border Agrobacterium transformation vectors. Transgenic Res 13:451–461

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vector carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  PubMed  CAS  Google Scholar 

  • Krinsky NI, Landrum JT, Bone RA (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 23:171–201

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AM, Davis RW (1994) Functional expression of the yeast FLP/FRT site specific recombination system in Nicotiana tabacum. Mol Gen Genet 242:653–657

    Article  PubMed  CAS  Google Scholar 

  • Lu H-J, Zhou X-R, Gong Z-X, Upadhyaya NM (2001) Generation of selectable marker free transgenic rice using double right-border vectors. Aust J Plant Physiol 28:241–248

    CAS  Google Scholar 

  • Miller M, Tagliani L, Wang N, Berka B, Bidney D, Zhao Z-Y (2002) High frequency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11:381–396

    Article  PubMed  CAS  Google Scholar 

  • Misawa N, Yamano S, Linden H, DeFelip MR, Lucas M, Ikenaga H, Sandmann G (1993) Functional expression of Erwinia uredovora carotenoid biosynthesis gene crtI in transgenic plants showing an increase of β-carotene biosynthesis activity and resistance to bleaching herbicide norflurazon. Plant J 4:833–840

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:474–497

    Article  Google Scholar 

  • Naik PS, Chanemougasoudharam A, Paul Khurana SM, Kalloo G (2003) Genetic manipulation of carotenoid pathway in higher plants. Curr Sci 85:1423–1430

    CAS  Google Scholar 

  • Odell J, Caimi P, Sauer B, Russell S (1990) Site directed recombination in the genome of transgenic tobacco. Mol Gen Genet 223:369–378

    Article  PubMed  CAS  Google Scholar 

  • Poirier Y, Ventre G, Nawrath C (2000) High-frequency linkage of co-expressing T-DNA in transgenic Arabidopsis thaliana transformed by vacuum-infiltration of Agrobacterium tumefaciens. Theor Appl Genet 100:487–493

    Article  CAS  Google Scholar 

  • Rao R, Abrigo E, Rai M, Oliva N, Datta K, Datta SK (2003) Marker-free Bt transgenic rice. Rice Genet Newslett 20:51–53

    Google Scholar 

  • Romer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley P (2000) Elevation of provitamin A content of transgenic tomato plants. Nat Biotechnol 18:666–669

    Article  PubMed  CAS  Google Scholar 

  • Romer S, Lubeck J, Kauder F, Steiger S, Adomat C, Sandmann G (2002) Genetic engineering of zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng 4:263–272

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schledz M, Al-Babili S, von Lintig J, Haubruck H, Rabbani S, Kleinig H, Beyer P (1996) Phytoene synthase from Narcissus pseudonarcissus: functional expression, galactolipid requirement, topological distribution in chromoplasts and induction during flowering. Arch Biochem Biophys 385:4–12

    Google Scholar 

  • Tan J, Baisakh N, Oliva N, Parkhi V, Rai M, Oliva N, Torrizo L, Datta K, Datta SK (2005) The screening of rice germplasm, including those transgenic rice lines which accumulate β-carotene in their polished seeds, for their carotenoid profile. Int J Food Sci Technol 40:563–569

    Article  CAS  Google Scholar 

  • Tu J, Datta K, Oliva N, Zhang G, Xu C, Khush GS, Zhang Q, Datta SK (2003) Site-independently integrated transgenes in the elite restorer rice line Minghui 63 allow removal of a selectable marker from the gene of interest by self-segregation. Plant Biotechnol J 1:155–165

    Article  PubMed  CAS  Google Scholar 

  • Vain P, Afolabi A, Worland B, Snape W (2003) Transgene behavior in populations of rice plants transformed using a new dual binary vector system: pGreen/pSoup. Theor Appl Genet 107:201–217

    Article  CAS  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S, Oliveira M, Goto F, Datta SK (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 64:371–378

    Article  CAS  Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:302–305

    Article  Google Scholar 

  • Zubko E, Scutt C, Meyer P (2000) Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol 18:442–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from USAID and the Rockefeller Foundation is acknowledged. Thanks are due to Syngenta for an international collaborative programme. The work has been carried out in compliance with the current laws governing genetic experimentation in the country concerned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Datta.

Additional information

Communicated by R. Hagemann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkhi, V., Rai, M., Tan, J. et al. Molecular characterization of marker-free transgenic lines of indica rice that accumulate carotenoids in seed endosperm. Mol Genet Genomics 274, 325–336 (2005). https://doi.org/10.1007/s00438-005-0030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-005-0030-7

Keywords

Navigation