Skip to main content

Advertisement

Log in

Genetic markers as therapeutic target in rheumatoid arthritis: A game changer in clinical therapy?

  • Genes and Disease
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a chronic, inflammatory, multi-systemic autoimmune disease unremitted by genetic and environmental factors. The factors are crucial but inadequate in the development of disease; however, these factors can be representative of potential therapeutic targets and response to clinical therapy. Insights into the contribution of genetic risk factors are currently in progress with studies querying the genetic variation, their role in gene expression of coding and non-coding genes and other mechanisms of disease. In this review, we describe the significance of genetic markers architecture of RA through genome-wide association studies and meta-analysis studies. Further, it also reveals the mechanism of disease pathogenesis investigated through the mutual findings of functional and genetic studies of individual RA-associated genes, which includes HLA-DRB1, HLA-DQB1, HLA-DPB1, PADI4, PTPN22, TRAF1-C5, STAT4 and C5orf30. However, the genetic background of RA remains to be clearly depicted. Prospective efforts of the post-genomic and functional genomic period can travel toward real possible assessment of the genetic effect on RA. The discovery of novel genes associated with the disease can be appropriate in identifying potential biomarkers, which could assist in early diagnosis and aggressive treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gregersen PK, Silver J, Winchester RJ (1987) The shared epitope hypothesis. an approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 30:1205–1213. doi:10.1002/art.1780301102

    Article  CAS  PubMed  Google Scholar 

  2. Kurkó J, Besenyei T, Laki J et al (2013) Genetics of rheumatoid arthritis—a comprehensive review. Clin Rev Allergy Immunol 45:170–179. doi:10.1007/s12016-012-8346-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tobón GJ, Youinou P, Saraux A (2010) The environment, geo-epidemiology, and autoimmune disease: rheumatoid arthritis. J Autoimmun 35:10–14. doi:10.1016/j.jaut.2009.12.009

    Article  PubMed  Google Scholar 

  4. van der Helm-van Mil AHM, Wesoly JZ, Huizinga TWJ (2005) Understanding the genetic contribution to rheumatoid arthritis. Curr Opin Rheumatol 17:299–304

    Article  PubMed  Google Scholar 

  5. Szodoray P, Szabó Z, Kapitány A et al (2010) Anti-citrullinated protein/peptide autoantibodies in association with genetic and environmental factors as indicators of disease outcome in rheumatoid arthritis. Autoimmun Rev 9:140–143. doi:10.1016/j.autrev.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  6. de Vries R (2011) Genetics of rheumatoid arthritis: time for a change! Curr Opin Rheumatol 23:227–232. doi:10.1097/BOR.0b013e3283457524

    Article  PubMed  Google Scholar 

  7. Klareskog L, Padyukov L, Lorentzen J, Alfredsson L (2006) Mechanisms of disease: genetic susceptibility and environmental triggers in the development of rheumatoid arthritis. Nat Clin Pract Rheumatol 2:425–433. doi:10.1038/ncprheum0249

    Article  CAS  PubMed  Google Scholar 

  8. Quan L, Thiele GM, Tian J, Wang D (2008) The development of novel therapies for rheumatoid arthritis. Expert Opin Ther Pat 18:723–738. doi:10.1517/13543776.18.7.723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Willemze A, Trouw LA, Toes REM, Huizinga TWJ (2012) The influence of ACPA status and characteristics on the course of RA. Nat Rev Rheumatol 8:144–152. doi:10.1038/nrrheum.2011.204

    Article  CAS  PubMed  Google Scholar 

  10. Aletaha D, Neogi T, Silman AJ et al (2010) 2010 Rheumatoid arthritis classification criteria: an American college of rheumatology/European league against rheumatism collaborative initiative. Arthritis Rheum 62:2569–2581. doi:10.1002/art.27584

    Article  PubMed  Google Scholar 

  11. MacGregor AJ, Snieder H, Rigby AS et al (2000) Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 43:30–37. doi:10.1002/1529-0131(200001)43:1<30:AID-ANR5>3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  12. Machold KP, Stamm TA, Nell VPK et al (2007) Very recent onset rheumatoid arthritis: clinical and serological patient characteristics associated with radiographic progression over the first years of disease. Rheumatol Oxf Engl 46:342–349. doi:10.1093/rheumatology/kel237

    Article  CAS  Google Scholar 

  13. Muthana M, Hawtree S, Wilshaw A et al (2015) C5orf30 is a negative regulator of tissue damage in rheumatoid arthritis. Proc Natl Acad Sci USA 112:11618–11623. doi:10.1073/pnas.1501947112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Greenberg JD, Ostrer H (2007) Predicting response to TNF antagonists in rheumatoid arthritis: the promise of pharmacogenetics research using clinical registries. Bull NYU Hosp Jt Dis 65:139–142

    PubMed  Google Scholar 

  15. Silman AJ, MacGregor AJ, Thomson W et al (1993) Twin concordance rates for rheumatoid arthritis: results from a nationwide study. Br J Rheumatol 32:903–907

    Article  CAS  PubMed  Google Scholar 

  16. van der Woude D, Houwing-Duistermaat JJ, Toes REM et al (2009) Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum 60:916–923. doi:10.1002/art.24385

    Article  PubMed  Google Scholar 

  17. Okada Y, Wu D, Trynka G et al (2014) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506:376–381. doi:10.1038/nature12873

    Article  CAS  PubMed  Google Scholar 

  18. Arend WP, Firestein GS (2012) Pre-rheumatoid arthritis: predisposition and transition to clinical synovitis. Nat Rev Rheumatol 8:573–586. doi:10.1038/nrrheum.2012.134

    Article  CAS  PubMed  Google Scholar 

  19. Horton R, Wilming L, Rand V et al (2004) Gene map of the extended human MHC. Nat Rev Genet 5:889–899. doi:10.1038/nrg1489

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez-Gay MA, Garcia-Porrua C, Hajeer AH (2002) Influence of human leukocyte antigen-DRB1 on the susceptibility and severity of rheumatoid arthritis. Semin Arthritis Rheum 31:355–360. doi:10.1053/sarh.2002.32552

    Article  CAS  PubMed  Google Scholar 

  21. Stastny P (1978) HLA-D and IA antigens in rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum 21:S139–S143. doi:10.1002/art.1780210921

    Article  CAS  PubMed  Google Scholar 

  22. Lee H-S, Lee AT, Criswell LA et al (2008) Several regions in the major histocompatibility complex confer risk for anti-CCP-antibody positive rheumatoid arthritis, independent of the DRB1 locus. Mol Med Camb Mass 14:293–300. doi:10.2119/2007-00123.Lee

    PubMed  PubMed Central  Google Scholar 

  23. Vignal C, Bansal AT, Balding DJ et al (2009) Genetic association of the major histocompatibility complex with rheumatoid arthritis implicates two non-DRB1 loci. Arthritis Rheum 60:53–62. doi:10.1002/art.24138

    Article  CAS  PubMed  Google Scholar 

  24. Ding J, Eyre S, Worthington J (2015) Genetics of RA susceptibility, what comes next? RMD Open 1:e000028. doi:10.1136/rmdopen-2014-000028

    Article  PubMed  PubMed Central  Google Scholar 

  25. Raychaudhuri S, Sandor C, Stahl EA et al (2012) Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet 44:291–296. doi:10.1038/ng.1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reynolds RJ, Ahmed AF, Danila MI et al (2014) HLA-DRB1-associated rheumatoid arthritis risk at multiple levels in African Americans: hierarchical classification systems, amino acid positions, and residues. Arthritis Rheumatol Hoboken NJ 66:3274–3282. doi:10.1002/art.38855

    Article  CAS  Google Scholar 

  27. Han B, Diogo D, Eyre S et al (2014) Fine mapping seronegative and seropositive rheumatoid arthritis to shared and distinct HLA alleles by adjusting for the effects of heterogeneity. Am J Hum Genet 94:522–532. doi:10.1016/j.ajhg.2014.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Irigoyen P, Lee AT, Wener MH et al (2005) Regulation of anti-cyclic citrullinated peptide antibodies in rheumatoid arthritis: contrasting effects of HLA-DR3 and the shared epitope alleles. Arthritis Rheum 52:3813–3818. doi:10.1002/art.21419

    Article  CAS  PubMed  Google Scholar 

  29. Verpoort KN, van Gaalen FA, van der Helm-van Mil AHM et al (2005) Association of HLA-DR3 with anti-cyclic citrullinated peptide antibody-negative rheumatoid arthritis. Arthritis Rheum 52:3058–3062. doi:10.1002/art.21302

    Article  CAS  PubMed  Google Scholar 

  30. van der Woude D, Lie BA, Lundström E et al (2010) Protection against anti-citrullinated protein antibody-positive rheumatoid arthritis is predominantly associated with HLA-DRB1*1301: a meta-analysis of HLA-DRB1 associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis in four European populations. Arthritis Rheum 62:1236–1245. doi:10.1002/art.27366

    Article  PubMed  Google Scholar 

  31. Oka S, Furukawa H, Kawasaki A et al (2014) Protective effect of the HLA-DRB1*13:02 allele in Japanese rheumatoid arthritis patients. PLoS One 9:e99453. doi:10.1371/journal.pone.0099453

    Article  PubMed  PubMed Central  Google Scholar 

  32. Silman AJ, Pearson JE (2002) Epidemiology and genetics of rheumatoid arthritis. Arthritis Res 4(Suppl 3):S265–S272

    Article  PubMed  PubMed Central  Google Scholar 

  33. Plenge RM, Raychaudhuri S (2010) Leveraging human genetics to develop future therapeutic strategies in rheumatoid arthritis. Rheum Dis Clin North Am 36:259–270. doi:10.1016/j.rdc.2010.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  34. van Heemst J, Jansen DTSL, Polydorides S et al (2015) Crossreactivity to vinculin and microbes provides a molecular basis for HLA-based protection against rheumatoid arthritis. Nat Commun 6:6681. doi:10.1038/ncomms7681

    Article  PubMed  Google Scholar 

  35. Mori M, Yamada R, Kobayashi K et al (2005) Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J Hum Genet 50:264–266. doi:10.1007/s10038-005-0246-8

    Article  PubMed  Google Scholar 

  36. Lins TC, Vieira RG, Grattapaglia D, Pereira RW (2010) Allele and haplotype frequency distribution in PTPN22 gene across variable ethnic groups: implications for genetic association studies for autoimmune diseases. Autoimmunity 43:308–316. doi:10.3109/08916930903405883

    Article  CAS  PubMed  Google Scholar 

  37. Bottini N, Vang T, Cucca F, Mustelin T (2006) Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol 18:207–213. doi:10.1016/j.smim.2006.03.008

    Article  CAS  PubMed  Google Scholar 

  38. Chang X, Zhao Y, Sun S et al (2009) The expression of PADI4 in synovium of rheumatoid arthritis. Rheumatol Int 29:1411–1416. doi:10.1007/s00296-009-0870-2

    Article  CAS  PubMed  Google Scholar 

  39. Iwamoto T, Ikari K, Nakamura T et al (2006) Association between PADI4 and rheumatoid arthritis: a meta-analysis. Rheumatol Oxf Engl 45:804–807. doi:10.1093/rheumatology/kel023

    Article  CAS  Google Scholar 

  40. Suzuki A, Yamada R, Chang X et al (2003) Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 34:395–402. doi:10.1038/ng1206

    Article  CAS  PubMed  Google Scholar 

  41. Kochi Y, Thabet MM, Suzuki A et al (2011) PADI4 polymorphism predisposes male smokers to rheumatoid arthritis. Ann Rheum Dis 70:512–515. doi:10.1136/ard.2010.130526

    Article  PubMed  Google Scholar 

  42. Kochi Y, Suzuki A, Yamada R, Yamamoto K (2010) Ethnogenetic heterogeneity of rheumatoid arthritis-implications for pathogenesis. Nat Rev Rheumatol 6:290–295. doi:10.1038/nrrheum.2010.23

    Article  CAS  PubMed  Google Scholar 

  43. Han T-U, Bang S-Y, Kang C, Bae S-C (2009) TRAF1 polymorphisms associated with rheumatoid arthritis susceptibility in Asians and in Caucasians. Arthritis Rheum 60:2577–2584. doi:10.1002/art.24759

    Article  CAS  PubMed  Google Scholar 

  44. Kurreeman FAS, Goulielmos GN, Alizadeh BZ et al (2010) The TRAF1-C5 region on chromosome 9q33 is associated with multiple autoimmune diseases. Ann Rheum Dis 69:696–699. doi:10.1136/ard.2008.106567

    Article  CAS  PubMed  Google Scholar 

  45. Ravetch JV, Clynes RA (1998) Divergent roles for Fc receptors and complement in vivo. Annu Rev Immunol 16:421–432. doi:10.1146/annurev.immunol.16.1.421

    Article  CAS  PubMed  Google Scholar 

  46. Arch RH, Thompson CB (1998) 4-1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor kappaB. Mol Cell Biol 18:558–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Speiser DE, Lee SY, Wong B et al (1997) A regulatory role for TRAF1 in antigen-induced apoptosis of T cells. J Exp Med 185:1777–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kobayashi S, Ikari K, Kaneko H et al (2008) Association of STAT4 with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in the Japanese population. Arthritis Rheum 58:1940–1946. doi:10.1002/art.23494

    Article  PubMed  Google Scholar 

  49. Watford WT, Hissong BD, Bream JH et al (2004) Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev 202:139–156. doi:10.1111/j.0105-2896.2004.00211.x

    Article  CAS  PubMed  Google Scholar 

  50. Walker JG, Ahern MJ, Coleman M et al (2006) Changes in synovial tissue Jak-STAT expression in rheumatoid arthritis in response to successful DMARD treatment. Ann Rheum Dis 65:1558–1564. doi:10.1136/ard.2005.050385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the management of VIT University for providing the facilities to carry out this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vino.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A.M.M.T., Vino, S. Genetic markers as therapeutic target in rheumatoid arthritis: A game changer in clinical therapy?. Rheumatol Int 36, 1601–1607 (2016). https://doi.org/10.1007/s00296-016-3563-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-016-3563-7

Keywords

Navigation