Skip to main content
Log in

High performance chlorinated natural rubber/zinc ferrite nanocomposite prepared through industrial compounding technique

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Present innovation demonstrates the fabrication, characterisation, thermal, flame retardancy, electrical conductivity, vulcanization and mechanical properties of zinc ferrite (ZnFe2O4) nanofiller inserted chlorinated natural rubber (Cl–NR) prepared by an industrial compounding technique. The interaction between ZnFe2O4 and Cl–NR was characterised by FT–IR. The uniform dispersion of nanofiller in the rubber matrix was confirmed by SEM and TEM analysis. XRD showed the structural changes of composite with the presence of crystalline peaks of ZnFe2O4 in chlorinated rubber. The flame retardancy and glass transition temperature of the rubber composites were significantly enhanced with the filler loading in chlorinated rubber was evident from LOI and DSC analysis, respectively. The vulcanization time of rubber nanocomposite was greatly reduced by the use of zinc ferrite that is an important factor for reducing the cost of the preparation of rubber goods. The tensile strength, tear resistance, modulus, hardness and heat build-up of nanocomposites were significantly increased with the addition of zinc ferrite whereas the abrasion loss, resilience and elongation at break were decreased. The electrical conductivity and dielectric properties of rubber nanocomposite were also investigated in various frequencies. The percolating network formed by ZnFe2O4 in Cl–NR results in the high electrical conductivity and dielectric behaviour of the fabricated composites. The higher mechanical properties, glass transition temperature and the electrical conductivity of fabricated composites were beneficial in designing lightweight and highly durable flexible electronic devices based on chlorinated natural rubber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Borapak W, Chueangchayaphan N, Pichaiyut S, Chueangchayaphan W (2021) Cure characteristics and physico-mechanical properties of natural rubber/silica composites: effect of natural rubber-graft-poly (2-hydroxyethyl acrylate) content. Polym Bull 78:2009–2023. https://doi.org/10.1007/s00289-020-03199-z

    Article  CAS  Google Scholar 

  2. Yang K, Zhang T, Zhu C, Zhang P, Zhao S, Guo L (2017) The reinforcing mechanism study of carbon nanotube in the NR matrix. Polym Bull 74:949–962. https://doi.org/10.1007/s00289-016-1755-7

    Article  CAS  Google Scholar 

  3. Kumar N, Singh KP, Giri A, Singh SP (2021) Transport mechanism and diffusion kinetics of kerosene through polynorbornene rubber/natural rubber blends. Polym Bull 6:1–21. https://doi.org/10.1007/s00289-021-03770-2

    Article  CAS  Google Scholar 

  4. Sareena C, Sreejith MP, Ramesan MT, Purushothaman E (2015) Transport properties of coconut shell powder (CSP)-reinforced natural rubber composites in aromatic solvents. Polym Bull 72:1683–1702. https://doi.org/10.1007/s00289-015-1364-x

    Article  CAS  Google Scholar 

  5. Poompradub S, Luthikaviboon T, Linpoo S, Rojanathanes R, Prasassarakich P (2011) Improving oxidation stability and mechanical properties of natural rubber vulcanizates filled with calcium carbonate modified by gallic acid. Polym Bull 66:965–977. https://doi.org/10.1007/s00289-010-0396-5

    Article  CAS  Google Scholar 

  6. Ibrahim S, Othman N, Yusof NH (2021) Preparation, characterization and properties of liquid natural rubber with low non-rubber content via photodegradation. Polym Bull 78:559–575. https://doi.org/10.1007/s00289-019-03030-4

    Article  CAS  Google Scholar 

  7. Subburaj M, Ramesan MT, Pradyumnan PP (2014) Preparation, characterization and conductivity studies of chlorinated natural rubber. AIP Conf Proc 1620:541–548. https://doi.org/10.1063/1.4898294

    Article  Google Scholar 

  8. Ha NT, Anh TN, Thuy TT, Kawahara S, Ougizawa T (2021) Preparation and application of epoxidized natural rubber from Artocarpus heterophyllus gum. Polym Bull 78:5137–5152. https://doi.org/10.1007/s00289-020-03361-7

    Article  CAS  Google Scholar 

  9. Inoue S, Nishio T (2007) Synthesis and properties of hydrogenated natural rubber. J Appl Polym Sci 103:3957–3963. https://doi.org/10.1002/app.25158

    Article  CAS  Google Scholar 

  10. Saengdee L, Phinyocheep DP (2021) Chemical modification of natural rubber in latex stage for improved thermal, oil, ozone and mechanical properties. J Polym Res 27:275. https://doi.org/10.1007/s10965-020-02246-7

    Article  CAS  Google Scholar 

  11. Tan WL, Salehabadi A, Isa MHM, Bakar MA, Bakar NHHA (2016) Synthesis and physicochemical characterization of organomodified halloysite/epoxidized natural rubber nanocomposites: a potential flame-resistant adhesive. J Mater Sci 51:1121–1132. https://doi.org/10.1007/s10853-015-9443-9

    Article  CAS  Google Scholar 

  12. Chen J, Li S, Zhong J, Wang B, Pan R, Wang Z, Gao L (2017) The effect of epoxidized natural rubber on mechanical properties of siliceous earth/natural rubber composites. Polym Bull 74:3955–3975. https://doi.org/10.1007/s00289-017-1934-1

    Article  CAS  Google Scholar 

  13. Hayeemasae N, Waesateh K, Saiwari S, Ismail H, Othman N (2020) Detailed investigation of the reinforcing effect of halloysite nanotubes-filled epoxidized natural rubber. Polym Bull 17:1–20. https://doi.org/10.1007/s00289-020-03461-4

    Article  CAS  Google Scholar 

  14. Khobragade PS, Naik JB, Chatterjee A (2017) Polystyrene-grafted wollastonite nanofiller for styrene butadiene rubber nanocomposite: rheological, thermal and mechanical studies. Polym Bull 7:1915–1934. https://doi.org/10.1007/s00289-016-1812-2

    Article  CAS  Google Scholar 

  15. Jose R, Varghese LA, Panicker UG (2021) Tailoring dielectric properties of natural rubber/millable polyurethane elastomer blends by filler embedding. Polym Bull 6:1–20. https://doi.org/10.1007/s00289-021-03595-z

    Article  CAS  Google Scholar 

  16. Nihmath A, Ramesan MT (2020) Studies on the role of hydroxyapatite nanoparticles in imparting unique thermal, dielectric, flame retardancy and petroleum fuel resistance to novel chlorinated EPDM/chlorinated NBR blend. Res Chem Intermed 46:5049–5068. https://doi.org/10.1007/s11164-020-04239-z

    Article  CAS  Google Scholar 

  17. Le HH, Parsekar M, Ilisch S, Henning S, Das A, Stöckelhuber KW, Beiner M, Ho CA, Adhikari R, Wießner S, Heinrich G (2014) Effect of Non-R ubber Components of NR on the Carbon Nanotube (CNT) Localization in SBR/NR Blends. Macromol Mater Eng 299:569–5682. https://doi.org/10.1002/mame.201300254

    Article  CAS  Google Scholar 

  18. Ismail H, Salleh SZ, Ahmad Z (2013) The effect of partial replacement of carbon black (CB) with halloysite nanotubes (HNTs) on the properties of CB/HNT-filled natural rubber nanocomposites. J Elastom Plast 45:445–455. https://doi.org/10.1177/2F0095244312457799

    Article  Google Scholar 

  19. Katihabwa A, Wang W, Jiang Y, Zhao X, Lu Y, Zhang L (2011) Multi-walled carbon nanotubes/silicone rubber nanocomposites prepared by high shear mechanical mixing. J Rein Plast Compos 30:1007–1014. https://doi.org/10.1177/2F0731684410394008

    Article  CAS  Google Scholar 

  20. Sae-Oui P, Thepsuwan U, Thaptong P, Sirisinha C (2014) Comparison of reinforcing efficiency of carbon black, conductive carbon black, and carbon nanotube in natural rubber. Adv Polym Technol 33:1–7. https://doi.org/10.1002/adv.21422

    Article  CAS  Google Scholar 

  21. Kruželák J, Kvasničáková A, Ušák E, Ušáková M, Dosoudil R, Hudec I (2020) Rubber magnets based on NBR and lithium ferrite with the ability to absorb electromagnetic radiation. Polym Adv Technol 31:1624–1633. https://doi.org/10.1002/pat.4891

    Article  CAS  Google Scholar 

  22. Mathew DS, Juang RS (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129:51–65. https://doi.org/10.1016/j.cej.2006.11.001

    Article  CAS  Google Scholar 

  23. Ramesan MT, Anjitha T, Parvathi K, Anilkumar T, Mathew G (2018) Nano zinc ferrite filler incorporated polyindole/poly (vinyl alcohol) blend: Preparation, characterization, and investigation of electrical properties. Adv Polym Technol 37:3639–3649. https://doi.org/10.1002/adv.22148

    Article  CAS  Google Scholar 

  24. Gao JM, Cheng F (2018) Study on the preparation of spinel ferrites with enhanced magnetic properties using limonite laterite ore as raw materials. J Magn Magn Mater 460:213–222. https://doi.org/10.1016/j.jmmm.2018.04.010

    Article  CAS  Google Scholar 

  25. Rahman MM, Khan SB, Faisal M, Asiri AM, Alamry KA (2012) Highly sensitive formaldehyde chemical sensor based on hydrothermally prepared spinel ZnFe2O4 nanorods. Sens Actuators B: Chem 171:932–937. https://doi.org/10.1016/j.snb.2012.06.006

    Article  CAS  Google Scholar 

  26. Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915. https://doi.org/10.1016/j.jmmm.2011.10.017

    Article  CAS  Google Scholar 

  27. Atif M, Hasanain SK, Nadeem M (2006) Magnetization of sol–gel prepared zinc ferrite nanoparticles: effects of inversion and particle size. Solid State Commun 138:416–421. https://doi.org/10.1016/j.ssc.2006.03.023

    Article  CAS  Google Scholar 

  28. Anjitha T, Anilkumar T, Mathew G, Ramesan MT (2019) Zinc ferrite@ polyindole nanocomposites: synthesis, characterization and gas sensing applications. Polym Compos 40:2802–2811. https://doi.org/10.1002/pc.25088

    Article  CAS  Google Scholar 

  29. Hosoya T, Sakamoto W, Yogo T (2014) In situ synthesis of manganese zinc ferrite nanoparticle/polymer hybrid nanocomposite from metal organics. J Mater Sci 49:5093–5099. https://doi.org/10.1007/s10853-014-8217-0

    Article  CAS  Google Scholar 

  30. Parvathi K, Ramesan MT (2022) Natural rubber composites filled with zinc ferrite nanoparticles: focus on structural, morphological, curing, thermal and mechanical properties. Res Chem Intermed 48:129–144. https://doi.org/10.1007/s11164-021-04586-5

    Article  CAS  Google Scholar 

  31. Ramesan MT, Anilkumar T (2009) Preparation and properties of different functional group containing styrene butadiene rubber. J Chil Chem Soc 54:23–27. https://doi.org/10.4067/S0717-9707200900010000

    Article  CAS  Google Scholar 

  32. Ho CC, Khew MC (1999) Surface characterisation of chlorinated unvulcanised natural rubber latex films. Int J Adhes Adhes 19:387–398. https://doi.org/10.1016/S0143-7496(98)00067-0

    Article  CAS  Google Scholar 

  33. Arun KNS, Ashoka S, Malingappa P (2018) Nano zinc ferrite modified electrode as a novel electrochemical sensing platform in simultaneous measurement of trace level lead and cadmium. J Environ Chem Eng 6:6939–6946. https://doi.org/10.1016/j.jece.2018.10.041

    Article  CAS  Google Scholar 

  34. Kundu A, Upadhyay C, Verma HC (2003) Magnetic properties of a partially inverted zinc ferrite synthesized by a new coprecipitation technique using urea. Phys Lett A 311:410–415. https://doi.org/10.1016/S0375-9601(03)00509-7

    Article  CAS  Google Scholar 

  35. Parvathi K, Al-Maghrabi MA, Subburaj M, Ramesan MT (2021) Natural rubber and copper alumina nanocomposite based flexible elastomer-inorganic hybrid systems. Polym Compos 42:4586–4595. https://doi.org/10.1002/pc.26170

    Article  CAS  Google Scholar 

  36. Kamari HM, Naseri MG, Saion EB (2014) A novel research on behavior of zinc ferrite nanoparticles in different concentration of poly (vinyl pyrrolidone) (PVP). Metals 4:118–129. https://doi.org/10.3390/met4020118

    Article  CAS  Google Scholar 

  37. Grujicic M, Cao G, Roy WN (2004) A computational analysis of the percolation threshold and the electrical conductivity of carbon nanotubes filled polymeric materials. J Mater Sci 39:4441–4449. https://doi.org/10.1023/b:jmsc.0000034136.11779.96

    Article  CAS  Google Scholar 

  38. Fadel M, Fouad SS (2001) AC conductivity of Se-Ge-As glassy system in relation to rigidity percolation. J Mater Sci 36:3667–3673. https://doi.org/10.1023/A:1017949111382

    Article  CAS  Google Scholar 

  39. Nihmath A, Ramesan MT (2020) Hydroxyapatite as a potential nanofiller in technologically useful chlorinated acrylonitrile butadiene rubber. Polym Test 91:106837. https://doi.org/10.1016/j.polymertesting.2020.106837

    Article  CAS  Google Scholar 

  40. Jasna VC, Ramesan MT (2018) Preparation, characterization, dielectric properties and solvent-imbibing behavior of styrene–butadiene rubber/zinc sulfide nanocomposites. Int J Plast Techol 22:217–233. https://doi.org/10.1007/s12588-018-9226-7

    Article  CAS  Google Scholar 

  41. Nihmath A, Ramesan MT (2021) Fabrication, characterization, dielectric properties, thermal stability, flame retardancy and transport behavior of chlorinated nitrile rubber/hydroxyapatite nanocomposites. Polym Bull 78:6999–7018. https://doi.org/10.1007/s00289-020-03469-w

    Article  CAS  Google Scholar 

  42. Golda RA, Marikani A, Alex EJ (2021) Effect of ceramic fillers on the dielectric, ferroelectric and magnetic properties of polymer nanocomposites for flexible electronics. J Electron Mater 50:3652–3667. https://doi.org/10.1007/s11664-021-08898-5

    Article  CAS  Google Scholar 

  43. Suhailath K, Ramesan MT (2020) Effect of ceria nanoparticles on mechanical properties, thermal and dielectric properties of poly (butyl methacrylate) nanocomposites. Polym Compos 41:2344–2354. https://doi.org/10.1007/s10854-017-8377-1

    Article  CAS  Google Scholar 

  44. Lucchese L, Liauw CM, Allen NS, Edge M, Thompson F, Whitehouse RS (2000) Use of microwave dielectric loss for characterisation of natural rubber/carbon black composites. Polym Bull 44:187–194. https://doi.org/10.1007/s002890050591

    Article  CAS  Google Scholar 

  45. Wang N, Zhou M, Zhang J, Fang Q (2020) Modified boron nitride as an efficient synergist to flame retardant natural rubber: preparation and properties. Polym Adv Technol 31:1887–1895. https://doi.org/10.1002/pat.4833

    Article  CAS  Google Scholar 

  46. Liu Y, Gao Y, Wang Q, Lin W (2018) The synergistic effect of layered double hydroxides with other flame retardant additives for polymer nanocomposites: a critical review. Dalton Trans 47:14827–14840. https://doi.org/10.1039/C8DT02949K

    Article  CAS  PubMed  Google Scholar 

  47. Wang N, Xu G, Wu Y, Zhang J, Hu L, Luan H, Fang Q (2016) The influence of expandable graphite on double-layered microcapsules in intumescent flame-retardant natural rubber composites. J Therm Anal Calorim 123:1239–1251. https://doi.org/10.1007/s10973-015-5011-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial assistance from KSCSTE, Government of Kerala, India (Order No.566/2017/KSCSTE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Ramesan.

Ethics declarations

Conflict of interest

The authors of this article have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvathi, K., Ramesan, M.T. High performance chlorinated natural rubber/zinc ferrite nanocomposite prepared through industrial compounding technique. Polym. Bull. 80, 3165–3182 (2023). https://doi.org/10.1007/s00289-022-04201-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04201-6

Keywords

Navigation