Skip to main content
Log in

Fabrication, characterization, dielectric properties, thermal stability, flame retardancy and transport behavior of chlorinated nitrile rubber/hydroxyapatite nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work focused on the preparation of chlorinated nitrile rubber (Cl-NBR)/hydroxyapatite (HA) nanocomposites by an open two-roll mixing mill. The formation of nanocomposites was characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The dielectric properties and flame retardancy of polymer nanocomposites were analyzed with special attention to the loading of HA nanoparticles. Diffusion and permeation properties of petroleum solvents through the prepared Cl-NBR/HA composites were also investigated in detail as a function of filler content, different temperatures and nature of solvent. The incorporation of HA in Cl-NBR has been endorsed by FTIR analysis. The XRD showed the crystalline peaks of HA in the polymer chain. SEM images revealed that the nanoparticles were uniformed distributed in the polymer network with spherically shaped particles. TGA results indicated that the thermal stability of nanocomposites was remarkably higher than the pure Cl-NBR and the thermal stability increases with the loading of nanoparticles. The dielectric study observed a decreasing dielectric constant with increasing frequency, and the maximum property was obtained for 7 phr HA filling in Cl-NBR. The flame resistance of the polymer composites was greatly enhanced by the incorporation of nanoparticles. The diffusion, sorption and permeation constants were found to decreased with increase  in HA content. The solvent uptake decreases with the size of the penetrant molecules, and the mechanism of transport of Cl-NBR composite was anomalous in nature. The enthalpy and entropy changes of the nanocomposites were analyzed from the diffusion data. The composite containing 7 phr HA sample showed higher dielectric properties and better solvent resistance properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Khobragade PS, NaikChatterjee JBA (2017) Polystyrene-grafted wollastonite nanofiller for styrene butadiene rubber nanocomposite: rheological, thermal and mechanical studies. Polym Bull 74:1915–1934

    Article  CAS  Google Scholar 

  2. Abbasian M, Seyyedi M, Jaymand M (2020) Modification of thermoplastic polyurethane through the grafting of well-defined polystyrene and preparation of its polymer/clay nanocomposite. Polym Bull 77:1107–1120

    Article  CAS  Google Scholar 

  3. Sadeghalvaad M, Dabiri E, Zahmatkesh S, Afsharimoghadam P (2019) Preparation and properties evaluation of nitrile rubber nanocomposites reinforced with organo-clay, CaCO3, and SiO2 nanofillers. Polym Bull 76:3819–3839

    Article  CAS  Google Scholar 

  4. Suhailath K, Ramesan MT (2019) Investigations on the structural, mechanical, thermal and electrical properties of Ce doped TiO2/poly (n-butyl methacrylate) nanocomposites. J Therm Anal Calorim 135:2159–2169

    Article  CAS  Google Scholar 

  5. Vijayan PP, Puglia D, Pioteck J, Kenny JM, Thomas S (2015) Liquid-rubber-modified epoxy/clay nanocomposites: effect of dispersion methods on morphology and ultimate properties. Polym Bull 72:1703–1722

    Article  CAS  Google Scholar 

  6. Zaragoza MV, Yescas AY, Arellano EAJ, Cruz AA, Saguilan AA, Vargas ER, Guzman SS, Valdes SS (2014) Immobilization of TiO2 nanoparticles on montmorillonite clay and its effect on the morphology of natural rubber nanocomposites. Polym Bull 71:1295–1313

    Article  Google Scholar 

  7. Zhu S, Guo J, Zhang J (2018) Enhancement of mechanical strength associated with interfacial tension between barium titanate and acrylonitrile–butadiene rubber with different acrylonitrile contents by surface modification. J Appl Polym Sci 135:45936–45946

    Article  Google Scholar 

  8. Jasna VC, Anilkumar T, Naik AA, Ramesan MT (2018) Chlorinated styrene butadiene rubber/zinc sulfide novel nanocomposites with unique properties- structural, flame retardant, transport and dielectric properties. J Polym Res 44(144):1–14

    Google Scholar 

  9. Gatos KG, Kocsis JK (2007) Effect of the aspect ratio of silicate platelets on the mechanical and barrier properties of hydrogenated acrylonitrile butadiene rubber (HNBR)/layered silicate nanocomposites. Eur Polym J 43:1097–1104

    Article  CAS  Google Scholar 

  10. Lapa VLC, de Oliveira PD, Visconte LLY (2008) Investigation of NBR-cellulose II nanocomposites by rheometric and equilibrium swelling properties. Polym Bull 60:281–290

    Article  CAS  Google Scholar 

  11. Balachandran M, Bhagawan SS (2017) Mechanical, thermal, and transport properties of nitrile rubber–nanocalcium carbonate composites. J Appl Polym Sci 126:1983–1992

    Article  Google Scholar 

  12. Yang S, Tian J, Bian X, Wu Y (2020) High performance NBR/fly ash composites prepared by an environment-friendly method. Compos Sci Technol 186:107909

    Article  CAS  Google Scholar 

  13. Kim J, Oh T, Lee D (2003) Preparation and characteristics of nitrile rubber (NBR) nanocomposites based on organophilic layered clay. Polym Int 52:1058–1063

    Article  CAS  Google Scholar 

  14. Jasna VC, Priyanka K, Mathew G, Ramesan MT (2018) Evaluation of spectral, thermal, flame retardant, dielectric, solvent diffusion and transport behavior of novel nanocomposite derived from chlorinated styrene butadiene rubber and manganous tungstate. Polym Compos 39(S3):E1880–E1889

    Article  CAS  Google Scholar 

  15. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95:2126–2146

    Article  CAS  Google Scholar 

  16. Boudemagh D, Venturini P, Fleutot S, Cleymand F (2019) Elaboration of hydroxyapatite nanoparticles and chitosan/hydroxyapatite composites: a present status. Polym Bull 76:2621–2653

    Article  CAS  Google Scholar 

  17. Dong QX, Chen QJ, Yang W, Chen Q, Yang W, Zheng Y, Liu X, Li Y, Yang M (2008) Thermal properties and flame retardancy of polycarbonate/hydroxyapatite nanocomposite. J Appl Polym Sci 109:659–663

    Article  CAS  Google Scholar 

  18. Bhowmik R, Katti KS, Katti DR (2009) Molecular interactions of degradable and non-degradable polymers with hydroxyapatite influence mechanics of polymer-hydroxyapatite nanocomposite biomaterials. Int J Nanotechnol 6:511–529

    Article  CAS  Google Scholar 

  19. Velazco LIC, Nonell JM, Valdes SS, deValle LFR (2009) Morphology and osteogenetic characteristics of polyamide/ nanohydroxyapatite biocomposites. Polym Bull 62:99–110

    Article  Google Scholar 

  20. Nihmath A, Ramesan MT (2018a) Synthesis, characterization, processability, mechanical properties, flame retardant and oil resistance of chlorinated acrylonitrile butadiene rubber. Polym Adv Technol 29:2165–2173

    Article  CAS  Google Scholar 

  21. Nihmath A, Ramesan MT (2018b) Preparation, characterization, thermal and electrical properties of chlorinated EPDM/hydroxyapatite nanocomposites. Polym Compos 39:2093–2100

    Article  CAS  Google Scholar 

  22. Pang YX, Bao XJ (2003) Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. Eur Ceram Soc 23:1697–1704

    Article  CAS  Google Scholar 

  23. Nejati E, Firouzdor V, Eslaminejad MB, Bagheri F (2009) Needle-like nano hydroxyapatite/poly(l-lactide acid) composite scaffold for bone tissue engineering application. Mater Sci Eng C 29:942–949

    Article  CAS  Google Scholar 

  24. Guozhang WuG, Li B, Song J (2011) Enhancing the electrical and thermal stability of metallic fiber-filled polymer composites by adding tin–lead alloy. Polym Bull 67:1105–1110

    Article  Google Scholar 

  25. Devi RR, Gogoi K, Konwar BK, Maji TK (2013) Synergistic effect of nanoTiO2 and nanoclay on mechanical, flame retardancy, UV stability, and antibacterial properties of wood polymer composites. Polym Bull 67:1105–1110

    Google Scholar 

  26. Suhailath K, Thomas M, Ramesan MT (2020) Effect of temperature on AC conductivity of poly (butyl methacrylate)/cerium dioxide nanocomposites and applicability of different conductivity modeling studies. Res Chem Intermed 46:2579–2594

    Article  CAS  Google Scholar 

  27. Hadi JM, Aziz SB, Mustafa MS, Brza MA, Hamsan MH, Kadir MFZ, Gharee HO, Hussein SA (2020) Electrochemical impedance study of proton conducting polymer electrolytes based on PVC doped with thiocyanate and plasticized with glycerol. Int J Electrochem Sci 15:4671–4683

    Article  CAS  Google Scholar 

  28. Aziz SB, Karim WO, Gharee HO (2020) The deficiency of chitosan: AgNO3 polymer electrolyte incorporated with titanium dioxide filler for device fabrication and membrane separation technology. J Mater Res Technol 9:4692–4705

    Article  CAS  Google Scholar 

  29. Abdullah OG, Salman YAK, Saleem SA (2016) Electrical conductivity and dielectric characteristics of in situ prepared PVA/HgS nanocomposite films. J Mater Sci Mater Electron 27:3591–3598

    Article  CAS  Google Scholar 

  30. Aziz SB, Al-Zangana S, Brza MA, Saeed SR, Abdulwahid RT, Kadir MFZ (2019) Study of dielectric properties and ion transport parameters in chitosan-barium nitrate based solid polymer electrolytes. Int J Electrochem Sci 14:11580–11595

    Article  CAS  Google Scholar 

  31. Aziz SB, Karim WO, Brza MA, Abdulwahid RT, Saeed SR, Al-Zangana S, Kadir MFZ (2019) Ion transport study in CS: POZ based polymer membrane electrolytes using Trukhan model. Int J Mol Sci 20:5625

    Article  Google Scholar 

  32. Aziz SB, Marif RB, Brza MA, Hamsan KMFZ (2019) Employing of Trukhan model to estimate ion transport parameters in PVA based solid polymer electrolyte. Polymers 11:1694

    Article  CAS  Google Scholar 

  33. Mousa A, Ishiaku US, Ishak ZAM (2005) Resistance of dynamically vulcanized poly(vinyl chloride)/nitrile butadiene rubber thermoplastic elastomers. Polym Bull 53:203–212

    Article  CAS  Google Scholar 

  34. Sareena C, Sreejith MP, Ramesan MT, Purushothaman E (2015) Transport properties of coconut shell powder (CSP) reinforced natural rubber composites in aromatic solvents. Polym Bull 72:1683–1702

    Article  CAS  Google Scholar 

  35. Padhi S, Achary PGR, Nayak NC (2015) Molecular transport behaviour of organic solvents through halloysite nanotubes filled ethylene–vinyl acetate copolymer. Bull Mater Sci 38:925–933

    Article  CAS  Google Scholar 

  36. Jasna VC, Ramesan MT (2018) Preparation, characterization, dielectric properties and solvent imbibing behavior of styrene butadiene rubber/zinc sulfide nanocomposites. Int J Plast Technol 23:217–223

    Article  Google Scholar 

  37. Thomas SP, Thomas S, Mathew EJ, Marykutty CV (2014) Transport and electrical properties of natural rubber/nitrile rubber blend composites reinforced with multiwalled carbon nanotube and modified nano zinc oxide. Polym Compos 35:956–963

    Article  CAS  Google Scholar 

  38. Jasna VC, Anilkumar T, Mathew G, Ramesan MT (2018) Novel nanocomposites based on chlorinated styrene butadiene rubber and manganous tungstate: focus on curing, mechanical, electrical and solvent transport properties. J Mater Sci 53:9861–9876

    Article  CAS  Google Scholar 

  39. Lakshmipriya S, Kumar SA, Nandakumar K, Thomas S (2019) Influence of POSS fillers on the transport properties of natural rubber nanocomposites. Polym Compos 40:3020–3031

    Article  CAS  Google Scholar 

  40. Sen SK, Dasgupta B, Banerjee S (2009) Effect of introduction of heterocyclic moieties into polymer backbone on gas transport properties of fluorinated poly(ether imide) membranes. J Membr Sci 343:97–103

    Article  CAS  Google Scholar 

Download references

Funding

The author (M.T. Ramesan) greatly acknowledge the financial assistance from KSCSTE, Government of Kerala, India (Order No.566/2017/KSCSTE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Ramesan.

Ethics declarations

Conflict of interest

The authors of this article have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nihmath, A., Ramesan, M.T. Fabrication, characterization, dielectric properties, thermal stability, flame retardancy and transport behavior of chlorinated nitrile rubber/hydroxyapatite nanocomposites. Polym. Bull. 78, 6999–7018 (2021). https://doi.org/10.1007/s00289-020-03469-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03469-w

Keywords

Navigation