Skip to main content

Advertisement

Log in

Synthesis and superficial characterization of plasma polyfuran thin films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work presents a study about the synthesis of polyfuran films by plasma and their structural, morphological, electrical and hydrophilic characteristics. The syntheses were carried out at low pressure with resistive electrical glow discharges. The films have thickness in the 7–61 μm interval with a linear tendency as a function of the power of synthesis. The functional groups of the monomer, –C=C– and C–O, and other as C=O produced during the polymerization, were found in the polymers probably as dehydrogenation of =C–H groups in the monomer. The films have contact angles between 52° and 92° for distilled water, but with the addition of salts in KR solutions, the angles slightly increased reducing the hydrophilicity of the system. The conductivity of polyfuran films was calculated in the range of 10−9–10−11 S/m with two trends, one with high electronic activation energy at low temperature, and another with low activation energy at high temperature. The electronic activation energy in the first trend varied between 1.01 and 1.9 eV and in the second trend between 0.26 and 0.08 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carrillo I, Fernández-Martín F, Barba C, Sánchez de la Blanca E, González-Tejera MJ, Hernández-Fuentes I (1999) Thermal stability of polyfuran/pechlorate doped films. Polym Bull 43:269–276. doi:10.1007/s002890050562

    Article  CAS  Google Scholar 

  2. Acebedo DF, Miras MC, Barbero CA (2005) Solid support for high-throughput screening of conducting polymers. J Comb Chem 7:513–516

    Article  Google Scholar 

  3. Abou-Elenien GM, El-Maghraby AA, El-Abdallah GM (2004) Electrochemical relaxation study of polythiophene as conducting polymer (I). Synth Met 146:109–119. doi:10.1016/j.synthmet.2004.04.020

    Article  CAS  Google Scholar 

  4. Hotta S (1997) Handbook of organic conductive molecules and polymers 2, Conductive polymers: synthesis and electrical properties. Wiley, New York, p 309

    Google Scholar 

  5. Glenis S, Benz M, LeGoff E, Schindler JL, Kannewurf CR, Kanatzidis MG (1993) Polyfuran: a new synthetic approach and electronic properties. J Am Chem Soc 115:12519–12525. doi:10.1021/ja00079a035

    Article  CAS  Google Scholar 

  6. Wan X, Yan F, Jin S, Liu X, Xue G (1999) Low potential electrochemical synthesis of polyfuran and characterization of the obtained free-standing film. Chem Mater 11:2400–2407. doi:10.1021/cm9900453

    Article  CAS  Google Scholar 

  7. Balbas A, Gonzalez-Tejera MJ, Tortajada J (2001) Influence of the electron correlation on computed properties of furan oligomers. J Mol Struct 572:141–150. doi:10.1016/S0166-1280(01)00581-4

    Article  CAS  Google Scholar 

  8. Shilabin AG, Entezami AA (2000) Electrochemical behavior of conducting polyfuran derivatives containing pyrrole, thiophene and ethylenic spacers. Eur Polym J 36:2005–2020. doi:10.1016/S0014-3057(99)00262-1

    Article  CAS  Google Scholar 

  9. Salzner U, Lagowski JB, Pickup PG, Poirier RA (1998) Comparison of geometries and electronic structures of polyacetylene, polyborole, polycyclopentadiene, polypyrrole, polyfuran, polysilole, polyphosphole, polythiophene, polyselenophene and polytellurophene. Synth Met 96:177–189. doi:10.1016/S0379-6779(98)00084-8

    Article  CAS  Google Scholar 

  10. Wan XB, Zhang W, Jin S, Xue G, You QD, Che B (1999) The electrochemical copolymerization of pyrrole and furan in a novel binary solvent system. J Electroanal Chem. 470:23–30. doi:10.1016/S0022-0728(99)00205-3

    Article  CAS  Google Scholar 

  11. Demirboga B, Onal AM (1999) Electrochemical polymerization of furan and 2-methylfuran. Synth Met 99:237–242. doi:10.1016/S0379-6779(98)01509-4

    Article  CAS  Google Scholar 

  12. Talu M, Kabasakaloglu M, Yıldırım F, Sarı B (2001) Electrochemical synthesis and characterization of homopolymers of polyfuran and polythiophene and biopolymer films polyfuran/polythiophene and polythiophene/polyfuran. Appl Surf Sci 181:51–60. doi:10.1016/S0169-4332(01)00355-5

    Article  CAS  Google Scholar 

  13. Kumar DS (1999) Dielectric properties of plasma polymerized furan thin film capacitors. Mater Lett 4:1–4. doi:10.1016/S0167-577X(99)00093-2

    Article  Google Scholar 

  14. Kumar DS (2000) On the mechanism of electrical conduction in plasma polymerized furan films. J Mater Sci 35:4427–4430. doi:10.1023/A:1004873410933

    Article  CAS  Google Scholar 

  15. Gok A, Oksuz L (2007) Atmospheric pressure plasma deposition of polyfuran. J Macromol Sci Part A Pure Appl Chem 44:1095–1099. doi:10.1080/10601320701524021

    Article  CAS  Google Scholar 

  16. Cruz GJ, Morales J, Olayo R (1999) Films obtained by plasma polymerization of pyrrole. Thin Solid Films 342:119–126. doi:10.1016/S0040-6090(98)01450-3

    Article  CAS  Google Scholar 

  17. Cruz GJ, Morales J, Castillo-Ortega MM, Olayo R (1997) Synthesis of polyaniline films by plasma polymerization. Synth Met 88:213–218. doi:10.1016/S0379-6779(97)03853-8

    Article  CAS  Google Scholar 

  18. Olayo MG, Cruz GJ, López S, Morales J, Olayo R, (2010) Conductivity and activation energy in polymers synthesized by plasmas of thiophene. J Mex Chem Soc 54(1):18–23. http://www.redalyc.org/articulo.oa?id=47516172004

  19. Colin E, Olayo MG, Cruz GJ, Carapia L, Morales J, Olayo R (2009) Affinity of amine-functionalized plasma polymers with ionic solutions similar to those in the human body. Prog Org Coat 64:322–326. doi:10.1016/j.porgcoat.2008.08.033

    Article  CAS  Google Scholar 

  20. Gonzalez-Torres M, Cruz GJ, Olayo MG, Gomez LM, Lopez OG (2012) Plasma copolymerization of pyrrole and ethylenglycol to obtain porous polymers. Superficies y Vacío 25(3):179–182. http://smcsyv.fis.cinvestav.mx/supyvac/25_3/SV25317912.pdf

  21. Satulu V, Mitu B, Galca AC, Aldica GV, Dinescu G (2010) Polymer-like thin films obtained by RF plasma polymerization of pentacyclic monomers. J Optoelectron Adv Mater 12(3):631–636

    CAS  Google Scholar 

  22. Cruz GJ, Olayo MG, Lopez OG, Gomez LM, Morales J, Olayo R (2010) Nanospherical particles of polypyrrole synthesized and doped by plasma. Polymer 51:4314–4318. doi:10.1016/j.polymer.2010.07.024

    Article  CAS  Google Scholar 

  23. Morales J, Olayo MG, Cruz GJ, Herrera-Franco P, Olayo R (2006) Plasma modification of cellulose fibres for composite materials. J Appl Polym Sci 101:3821–3828. doi:10.1002/app.24085

    Article  CAS  Google Scholar 

  24. Gómez LM, Morales P, Cruz GJ, Olayo MG, Palacios JC, Morales J, Olayo R (2009) Plasma copolymerization of ethylene glycol and allylamine. Macromol Symp 283–284:7–12. doi:10.1002/masy.200950902

    Article  Google Scholar 

  25. Shackelford JF (1995) Ciencia de Materiales para Ingenieros, Ed. Hispanoamérica, México

  26. Malhotra BD (2002) Handbook of poymers in electronics. Rapra Technology Limited, UK

    Google Scholar 

  27. Palacios JC, Olayo MG, Cruz GJ, Chavez-Carvayar JA (2014) Meyer-Neldel rule in plasma polythiophene thin films. Open J Polym Chem 4:31–37. doi:10.1016/j.polymer.2010.07.024

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Jorge Pérez for their support in the SEM analysis and to CONACyT for the partial financial support to this work with the 130190 and 154757 projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Olayo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zúñiga, R., Cruz, G.J., Olayo, M.G. et al. Synthesis and superficial characterization of plasma polyfuran thin films. Polym. Bull. 72, 839–850 (2015). https://doi.org/10.1007/s00289-015-1309-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1309-4

Keywords

Navigation