Skip to main content
Log in

Influence of the compatibilizer/nanoclay ratio on final properties of polypropylene matrix modified with montmorillonite-based organoclay

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The use of nanoclays as additives for polymer matrices requires, in some cases (with non-polar matrices) the use of a compatibilizer agent which will act as a bridge or permanent buffer for nanoclay-matrix interaction. In this research, we have worked on the improvement of mechanical and thermal properties of polypropylene matrices by adding montmorillonite based nanoclays (MMT) which have been previously modified with an organic component (a quaternary ammonium salt modifier). In this particular case, we have worked on the optimization of the compatibilizer:nanoclay ratio. As a compatibilizer agent it has been used a propylene graft maleic anhydride copolymer (PP-g-MA) and the PP-g-MA:MMT ratio has varied from 0.25:1 to 4:1. Nanoclay dispersion and intercalation–exfoliation degree has been investigated by X-ray diffraction spectroscopy (XRD) and transmission electron microscopy (TEM). Also, mechanical and thermal properties for different PP-g-MA:MMT ratios have been determined. The results show optimum dispersion and intercalation–exfoliation levels for PP-g-MA:MMT ratios close to 3:1 and 4:1 and also we can observe a slight increase in mechanical and especially in thermal properties for similar ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dumont MJ, Reyna-Valencia A, Emond JP, Bousmina M (2007) Barrier properties of polypropylene/organoclay nanocomposites. J Appl Polym Sci 103:618

    Article  CAS  Google Scholar 

  2. Lopez-Quintanilla ML, Sanchez-Valdes S, de Valle LFR, Miranda RG (2006) Preparation and mechanical properties of PP/PP-g-MA/Org-MMT nanocomposites with different MA content. Polym Bull 57:385

    Article  CAS  Google Scholar 

  3. Svoboda P, Zeng CC, Wang H, Lee LJ, Tomasko DL (2002) Morphology and mechanical properties of polypropylene/organoclay nanocomposites. J Appl Polym Sci 85:1562

    Article  CAS  Google Scholar 

  4. Hasegawa N, Okamoto H, Kato M, Usuki A (2000) Preparation and mechanical properties of polypropylene-clay hybrids based on modified polypropylene and organophilic clay. J Appl Polym Sci 78:1918

    Article  CAS  Google Scholar 

  5. Tokihisa M, Yakemoto K, Sakai T, Utracki LA, Sepehr M, Li J, Simard Y (2006) Extensional flow mixer for polymer nanocomposites. Polym Eng Sci 46:1040

    Article  CAS  Google Scholar 

  6. Dennis HR, Hunter DL, Chang D, Kim S, White JL, Cho JW, Paul DR (2001) Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42:9513

    Article  CAS  Google Scholar 

  7. Garcia-Lopez D, Gobernado-Mitre I, Merino JC, Pastor JM (2007) Effect of the amount and funtionalization grade of PPgMA compatibilization agent in polypropylene/clay nanocomposites. Polym Bull 59:667

    Article  CAS  Google Scholar 

  8. Dharaiya DP, Jana SC (2005) Nanoclay-induced morphology development in chaotic mixing of immiscible polymers. J Polym Sci B Polym Phys 43:3638

    Article  CAS  Google Scholar 

  9. Avella M, Cosco S, Volpe GD, Errico ME (2005) Crystallization behavior and properties of exfoliated isotactic polypropylene/organoclay nanocomposites. Adv Polym Technol 24:132

    Article  CAS  Google Scholar 

  10. Porter D, Metcalfe E, Thomas MJK (2000) Nanocomposite fire retardants—a review. Fire Mater 24:45

    Article  CAS  Google Scholar 

  11. Lee JW, Lim YT, Park OO (2000) Thermal characteristics of organoclay and their effects upon the formation of polypropylene/organoclay nanocomposites. Polym Bull 45:191

    Article  CAS  Google Scholar 

  12. Ratnayake UN, Haworth B (2006) Polypropylene-clay nanocomposites: influence of low molecular weight polar additives on intercalation and exfoliation behavior. Polym Eng Sci 46:1008

    Article  CAS  Google Scholar 

  13. Gianelli W, Ferrara G, Camino G, Pellegatti G, Rosenthal J, Trombini RC (2005) Effect of matrix features on polypropylene layered silicate nanocomposites. Polymer 46:7037

    Article  CAS  Google Scholar 

  14. Lopez-Quintanilla ML, Sanchez-Valdes S, de Valle LFR, Medellin-Rodriguez FJ (2006) Effect of some compatibilizing agents on clay dispersion of polypropylene-clay nanocomposites. J Appl Polym Sci 100:4748

    Article  CAS  Google Scholar 

  15. Ellis TS, D’Angelo JS (2003) Thermal and mechanical properties of a polypropylene nanocomposite. J Appl Polym Sci 90:1639

    Article  CAS  Google Scholar 

  16. Rohlmann CO, Failla MD, Quinzani LM (2006) Linear viscoelasticity and structure of polypropylene-montmorillonite nanocomposites. Polymer 47:7795

    Article  CAS  Google Scholar 

  17. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539

    Article  CAS  Google Scholar 

  18. Lertwimolnun W, Vergnes B (2006) Effect of processing conditions on the formation of polypropylene/organoclay nanocomposites in a twin screw extruder. Polym Eng Sci 46:314

    Article  CAS  Google Scholar 

  19. Hasegawa N, Usuki A (2004) Silicate laver exfoliation in polvolefin/clay nanocomposites based on maleic anhydride modified polyolefins and organophilic clay. J Appl Polym Sci 93:464

    Article  CAS  Google Scholar 

  20. Chiu FC, Lai SM, Chen JW, Chu PH (2004) Combined effects of clay modifications and compatibilizers on the formation and physical properties of melt-mixed polypropylene/clay nanocomposites. J Polym Sci B Polym Phys 42:4139

    Article  CAS  Google Scholar 

  21. Zhu LJ, Xanthos M (2004) Effects of process conditions and mixing protocols on structure of extruded polypropylene nanocomposites. J Appl Polym Sci 93:1891

    Article  CAS  Google Scholar 

  22. Szazdi L, Pukanszky B, Vancso GJ, Pukanszky B (2006) Quantitative estimation of the reinforcing effect of layered silicates in PP nanocomposites. Polymer 47:4638

    Article  CAS  Google Scholar 

  23. Morgan AB, Gilman JW (2003) Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study. J Appl Polym Sci 87:1329

    Article  CAS  Google Scholar 

  24. Chen L, Wong SC, Pisharath S (2003) Fracture properties of nanoclay-filled polypropylene. J Appl Polym Sci 88:3298

    Article  CAS  Google Scholar 

  25. Golebiewski J, Galeski A (2007) Thermal stability of nanoclay polypropylene composites by simultaneous DSC and TGA. Compos Sci Technol 67:3442

    Article  CAS  Google Scholar 

  26. Kandola BK, Smart G, Horrocks AR, Joseph P, Zhang S, Hull TR, Ebdon J, Hunt B, Cook A (2008) Effect of different compatibilisers on nanoclay dispersion, thermal stability, and burning behavior of polypropylene-nanoclay blends. J Appl Polym Sci 108:816

    Article  CAS  Google Scholar 

  27. Smart G, Kandola BK, Horrocks AR, Nazare S, Marney D (2008) Polypropylene fibers containing dispersed clays having improved fire performance. Part II: characterization of fibers and fabrics from PP-nanoclay blends. Polym Adv Technol 19:658

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank “Ministerio de Ciencia y Tecnología”, Ref: DPI2007-66849-C02-02, “Ministerio de Ciencia e Innovación”, Ref: CIT-020000-2008-14 and IMPIVA Ref: IMIDIN/2008/26 and for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Balart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pascual, J., Fages, E., Fenollar, O. et al. Influence of the compatibilizer/nanoclay ratio on final properties of polypropylene matrix modified with montmorillonite-based organoclay. Polym. Bull. 62, 367–380 (2009). https://doi.org/10.1007/s00289-008-0018-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-008-0018-7

Keywords

Navigation