Skip to main content
Log in

Recent research progress in the synthesis, characterization and applications of hyper cross-linked polymer

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Hyper Cross-linked polymers (HCPs) are class of porous materials that have been intensively used in the past few years. The HCP material is in most cases synthesized by Friedel Craft reactions. The HCP material is synthesized by the following three methods: Post crosslinking of polymer precursors, direct single step poly-condensation reaction of functional monomers, and Crosslinking by external cross linkers. Hyper crosslinking is a technique that introduces a large number of tiny pores into a polymers. These pores result in a high surface area of the polymer which increases its reactivity. HCPs have extremely high surface areas, good porosity, low density, efficient adsorption properties, easy synthesis, less cost, environmental friendly, high thermal and chemical stability, light weight and reusability etc. These extraordinary features as compared to other polymers, make HCPs, promising candidates for solving environmental pollution and catalysis as well as energy crisis. They have many interesting applications such as water treatment, gas storage, super-capacitors, sensing, catalysis, drug delivery and chromatographic separations etc. In this review article, we not only discuss the strategies for the synthesis of HCPs but also the modern techniques for their characterization as well as recent applications of HCPs in different fields. The morphology of HCPs and their novel features also summarized in this review article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Rydz J et al (2014) Polyester-based (bio) degradable polymers as environmentally friendly materials for sustainable development. Int J Mol Sci 16(1):564–596

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shah T, Lyu Y, Zhang B (2023) The review and introduction of hypercrosslinked polymer. Fabrication and Functionalization of Advanced Tubular Nanofibers and their Applications. Elsevier, pp 1–28

    Google Scholar 

  3. Su Y et al (2022) Hypercrosslinked polymer gels as a synthetic hybridization platform for designing versatile molecular separators. J Am Chem Soc 144(15):6861–6870

    Article  CAS  PubMed  Google Scholar 

  4. Waheed A et al (2021) Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: A review of recent advances. J Environ Manag 287:112360

    Article  CAS  Google Scholar 

  5. Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462

    Article  CAS  Google Scholar 

  6. Havelková L et al (2023) Combining polymerization and templating toward hyper-cross-linked poly (propargyl aldehyde) s and poly (propargyl alcohol) s for reversible H2O and CO2 capture and construction of porous chiral networks. Polymers 15(3):743

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li B et al (2011) Hypercrosslinked microporous polymer networks for effective removal of toxic metal ions from water. Microporous Mesoporous Mater 138(1–3):207–214

    Article  CAS  Google Scholar 

  8. Hao A et al (2023) Acrylate-functionalized hyper-cross-linked polymers: Effect of the porogens in the polymerization on their porosity and adsorption from aqueous solution. Sep Purif Technol 311:123380

    Article  CAS  Google Scholar 

  9. Li C, Che W, Liu S-Y, Liao G (2023) Hypercrosslinked microporous polystyrene: from synthesis to properties to applications. Mater Today Chem 29:101392

  10. Budd PM, Msayib KJ, Tattershall CE, Ghanem BS, Reynolds KJ, McKeown NB, Fritsch D (2005) Gas separation membranes from polymers of intrinsic microporosity. J Membr Sci 251(1–2):263–269

    Article  CAS  Google Scholar 

  11. Qiao Z-A, Chai S-H, Nelson K, Bi Z, Chen J, Mahurin SM, Zhu X, Dai S (2014) Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates. Nat Commun 5(1):3705

    Article  PubMed  Google Scholar 

  12. Tan L, Tan B (2017) Correction: Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem Soc Rev 46(11):3481–3481

    Article  CAS  PubMed  Google Scholar 

  13. Abid A, Razzaque S, Hussain I, Tan B (2021) Eco-friendly phosphorus and nitrogen-rich inorganic–organic hybrid hypercross-linked porous polymers via a low-cost strategy. Macromolecules 54(12):5848–5855

    Article  CAS  Google Scholar 

  14. Maleki F, Ghaemi A, Mir Mohamad Sadeghi G (2023) Synthesis and characterization of waste styrofoam hypercrosslinked polymer as an adsorbent for CO2 capture. Environ Prog Sustain Energy 42(1):e13954

  15. Fontanals N, Marcé RM, Borrull F, Cormack PAG (2015) Hypercrosslinked materials: preparation, characterisation and applications. Polym Chem 6(41):7231–7244

    Article  CAS  Google Scholar 

  16. Raval NP, Shah PU, Shah NK (2016) Adsorptive removal of nickel (II) ions from aqueous environment: A review. J Environ Manag 179:1–20

    Article  CAS  Google Scholar 

  17. Kenawy E-R, Worley S, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8(5):1359–1384

    Article  CAS  PubMed  Google Scholar 

  18. Xu S, Luo Y, Tan B (2013) Recent development of hypercrosslinked microporous organic polymers. Macromol Rapid Commun 34(6):471–484

    Article  CAS  PubMed  Google Scholar 

  19. Huang J, Turner S (2018) Hypercrosslinked polymers: a review. Polym Rev 58:1–41

    Article  CAS  Google Scholar 

  20. Tsyurupa MP, Davankov VA (2006) Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review. React Funct Polym 66(7):768–779

    Article  CAS  Google Scholar 

  21. Belyakova LD, Schevchenko TI, Davankov VA, Tsyurupa MP (1986) Sorption of vapors of various substances by hypercrosslinked “styrosorb” polystyrenes. Adv Colloid Interface Sci 25:249–266

    Article  CAS  Google Scholar 

  22. Amin AM, Wang L, Yu H, Amer WA, Gao J, Huo J, Tai Y, Zhang L (2012) Synthesis and characterization of poly [bis (ethyl salicylate) phosphazenes] and poly [bis (ethyl salicylate diethylamino) phosphazenes] and their hydrolytic degradation. J Inorg Organomet Polym Mater 22:196–204

    Article  CAS  Google Scholar 

  23. Arcentales-Vera B et al (2022) Hyper-crosslinked polymers. Porous Polym Sci Appl. CRC Press, pp 7–36

    Chapter  Google Scholar 

  24. Lan F, Zhou C, Huang X, An B, Zhang X (2022) Metal-free, atom and redox-economical construction of C-C bonds enabled by oligofluorene-containing hypercrosslinked polymers. Green Chem 24(6):2391–2396

    Article  CAS  Google Scholar 

  25. Liu C, Shi L, Zhang J, Sun J (2022) One-pot synthesis of pyridine-based ionic hyper-cross-linked polymers with hierarchical pores for efficient CO2 capture and catalytic conversion. Chem Eng J 427:131633

  26. Huang J, Turner SR (2018) Hypercrosslinked polymers: a review. Polym Rev 58(1):1–41

    CAS  Google Scholar 

  27. Tiwari R, Walther A (2015) Strong anionic polyelectrolyte microgels. Polym Chem 6(31):5550–5554

    Article  CAS  Google Scholar 

  28. Wang R, Luan X, Yaseen M, Bao J, Li J, Zhao Z, Zhao Z (2023) Swellable array strategy based on designed flexible double hypercross-linked polymers for synergistic adsorption of toluene and formaldehyde. Environ Sci Technol 57(16):6682–6694

    Article  CAS  PubMed  Google Scholar 

  29. Abbott LJ, Colina CM (2014) Formation of microporosity in hyper-cross-linked polymers. Macromolecules 47(15):5409–5415

    Article  CAS  Google Scholar 

  30. Bhatnagar A, Sillanpää M, Witek-Krowiak A (2015) Agricultural waste peels as versatile biomass for water purification–A review. Chem Eng J 270:244–271

    Article  CAS  Google Scholar 

  31. Mittal A, Mittal J, Malviya A, Gupta VK (2009) Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption. J Colloid Interface Sci 340(1):16–26

    Article  CAS  PubMed  Google Scholar 

  32. Guo L, Tian M, Wang L, Zhou X, Wang Q, Hao L, Wu Q, Wang Z, Wang C (2023) Synthesis of hydroxyl-functional magnetic hypercrosslinked polymer as high efficiency adsorbent for sensitively detecting neonicotinoid residues in water and lettuce samples. Microchem J 187:108412

  33. Staudinger H, Heuer W (1934) Über hochpolymere Verbindungen, 93. Mitteil.: Über das Zerreißen der Faden‐Moleküle des Poly‐styrols. Berichte der deutschen chemischen Gesellschaft (A and B Series)  67(7):1159–1164

    Article  Google Scholar 

  34. Davankov V, Tsyurupa M, Ilyin M, Pavlova L (2002) Hypercross-linked polystyrene and its potentials for liquid chromatography: a mini-review. J Chromatogr A 965(1–2):65–73

    Article  CAS  PubMed  Google Scholar 

  35. Tan L, Tan B (2015) Recent developments of hypercrosslinked microporous organic polymers. Porous Polym 66–94

  36. Mcburney CH. Resinous insoluble reaction products of tertiary amines with haloalkylated vinyl aromatic hydrocarbon copolymers. U.S. Patent 2,591,573, issued April 1, 1952

  37. Davankov V, Tsyurupa MP (2010) Hypercrosslinked polymeric networks and adsorbing materials: synthesis, properties, structure, and applications. Elsevier

  38. Davankov VA, Rogozhin SV, Tsyurupa M (1973) New approach to preparation of uniformLy crosslinked macroreticular polystyrene structures. Vysokomol Soedin Ser B 15(6):463–465

    CAS  Google Scholar 

  39. Grassie N, Gilks J (1973) Thermal analysis of polystyrenes crosslinked by p-di (chloromethyl) benzene. J Polym Sci Polym Chem Ed 11(8):1985–1994

    Article  CAS  Google Scholar 

  40. Tsiurupa M, Lalaev V, Davankov V (1984) On reasons stipulating the unusual properties of hypercross-linked styrene polymers. Doklady Akademii Nauk SSSR 279(1):156–159

    Google Scholar 

  41. Tsyurupa MP, Davankov VA (2002) Hypercrosslinked polymers: basic principle of preparing the new class of polymeric materials. React Funct Polym 53(2–3):193–203

    Article  CAS  Google Scholar 

  42. Davankov VA, Ilyin MM, Tsyurupa MP, Timofeeva GI, Dubrovina LV (1996) From a dissolved polystyrene coil to an intramolecularly-hyper-cross-linked “nanosponge.” Macromolecules 29(26):8398–8403

    Article  CAS  Google Scholar 

  43. Cjurupa M, Lalaev V, Davankov V (1984) Synthesis and some physicochemical properties of macronet isoporous styrene polymers having crosslinking bridges of the diphenylmethane type. Acta Polym 35(6):451–455

    Article  Google Scholar 

  44. Song C, Peng L, Li Y, Du Y, Chen Z, Li W, Duan C, Yuan B, Yan S, Kawi S (2023) Fabrication, facilitating gas permeability, and molecular simulations of porous hypercrosslinked polymers embedding 6FDA-based polyimide mixed-matrix membranes. Molecules 28(5):2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Azanova V, Hradil J (1999) Sorption properties of macroporous and hypercrosslinked copolymers. React Funct Polym 41(1–3):163–175

    Article  CAS  Google Scholar 

  46. Lee J-Y, Wood CD, Bradshaw D, Rosseinsky MJ, Cooper AI (2006) Hydrogen adsorption in microporous hypercrosslinked polymers. Chemical Commun 25:2670–2672

    Article  Google Scholar 

  47. Davankov V, Tsyurupa M (1990) Structure and properties of hypercrosslinked polystyrene—the first representative of a new class of polymer networks. React Polym 13(1–2):27–42

    Article  CAS  Google Scholar 

  48. Davankov V, Rogozhin V, Tsjurupa M. Macronet polystyrene structures for ionites and method of producing same. U.S. Patent 3,729,457, issued April 24, 1973

  49. Germain J, Fréchet JM, Svec F (2009) Nanoporous polymers for hydrogen storage. Small 5(10):1098–1111

    Article  CAS  PubMed  Google Scholar 

  50. Tian Y, Wang Y, Liu L, Dong H, Zhu X, Ma F, Zhang C (2023) Fabrication of amidoxime functionalized hyper-cross-linked polymer for efficient extraction of uranium (VI) from water. J Mol Liq 372:121171

  51. Begni F, Gullo F, Paul G, Rea R, Ferrari M-C, Mangano E, Cossi M, Gatti G, Marchese L (2022) Optimization of the Friedel-Crafts alkylation for the synthesis of hyper-cross-linked polymers. ACS Appl Polym Mater 4(8):5281–5286

    Article  CAS  Google Scholar 

  52. Tan L, Tan B (2017) Hypercrosslinked porous polymer materials: Design, synthesis, and applications. Chem Soc Rev 46(11):3322–3356

    Article  CAS  PubMed  Google Scholar 

  53. Yue C, Liu R, Wan Q, Wang H, Liu L, Zhang X (2023) Synthesis of novel phosphate-based hypercrosslinked polymers for efficient uranium extraction from radioactive wastewater. J Water Process Eng 53:103582

  54. Wang Q, Zhang S, Li Z, Wang Z, Wang C, Alshehri SM, Bando Y, Yamauchi Y, Wu Q (2023) Design of hyper-cross-linked polymers with tunable polarity for effective preconcentration of aflatoxins in grain. Chem Eng J 453:139544

  55. Prince L, Guggenberger P, Santini E, Kleitz F, Woodward RT (2021) Metal-free hyper-cross-linked polymers from benzyl methyl ethers: A route to polymerization catalyst recycling. Macromolecules 54(19):9217–9222

    Article  CAS  Google Scholar 

  56. Wood CD, Tan B, Trewin A, Niu H, Bradshaw D, Rosseinsky MJ, Khimyak YZ et al (2007) Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem Mater 19(8):2034–2048

    Article  CAS  Google Scholar 

  57. Wood CD, Tan B, Trewin A, Su F, Rosseinsky MJ, Bradshaw D, Sun Y, Zhou L, Cooper AI (2008) Microporous organic polymers for methane storage. Adv Mater 20(10):1916–1921

    Article  CAS  Google Scholar 

  58. Schwab MG, Lennert A, Pahnke J, Jonschker G, Koch M, Senkovska I, Rehahn M, Kaskel S (2011) Nanoporous copolymer networks through multiple Friedel–Crafts-alkylation—studies on hydrogen and methane storage. J Mater Chem 21(7):2131–2135

    Article  CAS  Google Scholar 

  59. Chaikittisilp W, Kubo M, Moteki T, Sugawara-Narutaki A, Shimojima A, Okubo T (2011) Porous siloxane–organic hybrid with ultrahigh surface area through simultaneous polymerization–destruction of functionalized cubic siloxane cages. J Am Chem Soc 133(35):13832–13835

    Article  CAS  PubMed  Google Scholar 

  60. Luo Y, Zhang S, Ma Y, Wang W, Tan B (2013) Microporous organic polymers synthesized by self-condensation of aromatic hydroxymethyl monomers. Polym Chem 4(4):1126–1131

    Article  CAS  Google Scholar 

  61. Grzybowski M, Skonieczny K, Butenschön H, Gryko DT (2013) Comparison of oxidative aromatic coupling and the Scholl reaction. Angew Chem Int Ed 52(38):9900–9930

    Article  CAS  Google Scholar 

  62. Li B, Guan Z, Yang X, Wang WD, Wang W, Hussain I, Song K, Tan B, Li T (2014) Multifunctional microporous organic polymers. J Mater Chem A 2(30):11930–11939

    Article  CAS  Google Scholar 

  63. Li B, Gong R, Wang W, Huang X, Zhang W, Li H, Hu C, Tan B (2011) A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker. Macromolecules 44(8):2410–2414

    Article  CAS  Google Scholar 

  64. Wang J, Wang X, Deng Y, Wu T, Chen J, Liu J, Xu L, Zang Y (2023) Preparation of an electron-rich polyimide-based hypercrosslinked polymer for high-efficiency and reversible iodine capture. Polymer 267:125665

  65. Wang J, Fan Y, Zhang B (2023) Novel synthetic method for tubular hypercrosslinked polymer nanofibers and its mechanism. Fabrication and Functionalization of Advanced Tubular Nanofibers and their Applications. Elsevier, pp 29–46

    Chapter  Google Scholar 

  66. Errahali M, Gatti G, Tei L, Paul G, Rolla GA, Canti L, Fraccarollo A et al (2014) Microporous hyper-cross-linked aromatic polymers designed for methane and carbon dioxide adsorption. J Phys Chem C 118(49):28699–28710

    Article  CAS  Google Scholar 

  67. Luo Y, Li B, Wang W, Wu K, Tan B (2012) Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials. Adv Mater 24(42):5703–5707

    Article  CAS  PubMed  Google Scholar 

  68. Uemura T, Hoshino Y, Kitagawa S, Yoshida K, Isoda S (2006) Effect of organic polymer additive on crystallization of porous coordination polymer. Chem Mater 18(4):992–995

    Article  CAS  Google Scholar 

  69. Qian Q, Hu H, Huang S, Li Y, Lin L, Duan F, Zhu H, Du M, Lu S (2023) Versatile hyper-cross-linked polymer derived porous carbon nanotubes with tailored selectivity for oxygen reduction reaction. Carbon 202:81–89

    Article  CAS  Google Scholar 

  70. Yang K, Cui Y, Zhang B (2023) Oil adsorption performance of tubular hypercrosslinked polymer and carbon nanofibers. In: Fabrication and functionalization of advanced tubular nanofibers and their applications. Woodhead Publishing, pp 153–182

  71. Li B, Huang X, Liang L, Tan B (2010) Synthesis of uniform microporous polymer nanoparticles and their applications for hydrogen storage. J Mater Chem 20(35):7444–7450

    Article  CAS  Google Scholar 

  72. Gao TN, Wang T, Wu W, Liu Y, Huo Q, Qiao Z-A, Dai S (2019) Solvent-induced self-assembly strategy to synthesize well-defined hierarchically porous polymers. Adv Mater 31(11):1806254

  73. Liu S, Chen D, Zheng J, Zeng L, Jiang J, Jiang R, Zhu F, Shen Y, Wu D, Ouyang G (2015) The sensitive and selective adsorption of aromatic compounds with highly crosslinked polymer nanoparticles. Nanoscale 7(40):16943–16951

    Article  CAS  PubMed  Google Scholar 

  74. Meng Q, Yu L, Yang X, Gao R, Chang H, Wu Y, Yang Z, Xu A, Gao S, Liu F (2023) Synthesis of hypercross-linked hybrid polyanilines from hollow spherical polyaniline and octavinylsilsesquioxane and its dye adsorption performance. Mater Today Commun 34:105488

  75. Razzaque S, Cai C, Lu Q-W, Huang F-Z, Li Y-S, Tang H-B, Hussain I, Tan B (2017) Development of functionalized hollow microporous organic capsules encapsulating morphine–an in vitro and in vivo study. J Mater Chem B 5(4):742–749

    Article  CAS  PubMed  Google Scholar 

  76. Razzaque S, Cheng Y, Hussain I, Tan B (2020) Synthesis of surface functionalized hollow microporous organic capsules for doxorubicin delivery to cancer cells. Polym Chem 11(12):2110–2118

    Article  CAS  Google Scholar 

  77. Hou R, O’Loughlin R, Ackroyd J, Liu Q, Doherty CM, Wang H, Hill MR, Smith SJD (2020) Greatly enhanced gas selectivity in mixed-matrix membranes through size-controlled hyper-cross-linked polymer additives. Ind Eng Chem Res 59(30):13773–13782

    Article  CAS  Google Scholar 

  78. Meng Q, Rong M, Xing H, Yu J, Wang Y, Wei X, Chi R-A, Chen C, Liu H, Yang L (2023) One-step synthesis of boronic acid-functionalized hypercrosslinked polymers for efficient separation of 1, 2, 4-butanetriol. Sep Purif Technol 314:123436

  79. Ta HQ, Mendes RG, Liu Y, Yang X, Luo J, Bachmatiuk A, Gemming T et al (2021) In situ fabrication of freestanding single-atom-thick 2D metal/metallene and 2D metal/metallene oxide membranes: recent developments. Adv Sci 8(20):2100619

  80. Park J et al (2020) Core hyper-cross-linked star polymers from block polymer micelle precursors. Polym Chem 11:7178–7184

    Article  CAS  Google Scholar 

  81. Chae JA, Oh Y, Kim HJ, Choi GB, Lee KM, Jung D, Kim YA, Kim H (2019) Preparation of compressible polymer monoliths that contain mesopores capable of rapid oil–water separation. Polym Chem 10(37):5142–5150

    Article  CAS  Google Scholar 

  82. Yang X, Tan L, Xia L, Wood CD, Tan B (2015) Hierarchical porous polystyrene monoliths from polyHIPE. Macromol Rapid Commun 36(17):1553–1558

    Article  CAS  PubMed  Google Scholar 

  83. Zidan G, Greene CA, Seyfoddin A (2020) Formulation design in drug delivery. Eng Drug Deliv Syst. Elsevier, pp 17–41

    Chapter  Google Scholar 

  84. Deng F et al (2019) Application of nanomaterials and nanotechnology in the reutilization of metal ion from wastewater. Nanomaterials for the removal of pollutants and resource reutilization. Elsevier, pp 149–178

    Chapter  Google Scholar 

  85. Wang X, Ou H, Huang J (2019) One-pot synthesis of hyper-cross-linked polymers chemically modified with pyrrole, furan, and thiophene for phenol adsorption from aqueous solution. J Colloid Interface Sci 538:499–506

    Article  CAS  PubMed  Google Scholar 

  86. Tu Y, Xu G, Jiang L, Hu X, Xu J, Xie X, Li A (2020) Amphiphilic hyper-crosslinked porous cyclodextrin polymer with high specific surface area for rapid removal of organic micropollutants. Chem Eng J 382:123015

  87. Issaadi N et al (2018) Effect of variability of porous media properties on drying kinetics: Application to cement-based materials. Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics. Elsevier, pp 243–289

    Chapter  Google Scholar 

  88. Everaerts AI, Clemens L (2002) Pressure sensitive adhesives. Adhes Sci Eng. Elsevier, pp 465–534

    Google Scholar 

  89. Pastukhov AV, Tsyurupa MP, Davankov VA (1999) Hypercrosslinked polystyrene: A polymer in a non-classical physical state. J Polym Sci Part B Polym Phys 37(17):2324–2333

    Article  CAS  Google Scholar 

  90. Liu J, Duan W, Song J, Guo X, Wang Z, Shi X, Liang J et al (2019) Self-healing hyper-cross-linked metal–organic polyhedra (HCMOPs) membranes with antimicrobial activity and highly selective separation properties. J Am Chem Soc 141(30):12064–12070

    Article  CAS  PubMed  Google Scholar 

  91. Radjabian M, Abetz V (2020) Advanced porous polymer membranes from self-assembling block copolymers. Prog Polym Sci 102:101219

    Article  CAS  Google Scholar 

  92. Xin Y, Xiong Q, Bai Q, Miyamoto M, Li C, Shen Y, Uyama H (2017) A hierarchically porous cellulose monolith: A template-free fabricated, morphology-tunable, and easily functionalizable platform. Carbohydr Polym 157:429–437

    Article  CAS  PubMed  Google Scholar 

  93. Dutra RC, Martins TVS, Rocha DDG, Meneghetti MR, Meneghetti SMP, Sulman MG, Matveeva VG, Suarez PAZ (2023) Doped ruthenium/hypercrosslinked polystyrene (HPS) catalysts in the modification of fatty acid methyl esters. Catalysts 13(3):630

    Article  CAS  Google Scholar 

  94. Boshra IK, Elhedery TM, Elbeih A (2022) Investigation of the gum stock behavior of polyurethane crosslinking matrix by adding triol/diol mixtures for the application of composite solid rocket propellants. Def Sci J 72(2)

  95. Wang X, Mu P, Zhang C, Chen Y, Zeng J, Wang F, Jiang J-X (2017) Control synthesis of tubular hyper-cross-linked polymers for highly porous carbon nanotubes. ACS Appl Mater Interfaces 9(24):20779–20786

    Article  CAS  PubMed  Google Scholar 

  96. Hesse S, Rorrer N, Gorugantu S, Buss B, Morais AR, Brandner D, Nicholson S et al (2023) In situ x-ray scattering methods for the characterization of polymers during recycling. Bull Am Phys Soc

  97. Petit S, Madejova J (2013) Fourier transform infrared spectroscopy. Developments in clay science. Elsevier, pp 213–231

    Google Scholar 

  98. Raucci A, Miglione A, Lenzi L, Fabbri P, Di Tocco J, Massaroni C, Presti DL et al (2023) Characterization and application of porous PHBV-based bacterial polymers to realize novel bio-based electroanalytical (bio) sensors. Sens Actuators B Chem 379:133178

  99. Najafi P, Penchah HR, Ghaemi A (2021) Synthesis and characterization of Benzyl chloride-based hypercrosslinked polymers and its amine-modification as an adsorbent for CO2 capture. Environ Technol Innov 23:101746

  100. Streat M, Sweetland L (1998) Removal of pesticides from water using hypercrosslinked polymer phases: part 1—physical and chemical characterization of adsorbents. Process Saf Environ Protect 76(2):115–126

    Article  CAS  Google Scholar 

  101. Trotta F, Cavalli R (2009) Characterization and applications of new hyper-cross-linked cyclodextrins. Compos Interfaces 16(1):39–48

    Article  CAS  Google Scholar 

  102. Pasek-Allen JL, Wilharm RK, Bischof JC, Pierre VC (2023) NMR Characterization of polyethylene glycol conjugates for nanoparticle functionalization. ACS Omega 8(4):4331–4336

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gupta S, Puttaiahgowda YM, Parambil AM, Kulal A (2023) Fabrication of crosslinked piperazine polymer coating: Synthesis, characterization and its activity towards microorganisms. J Mol Struct 1274:134522

  104. Joseph R, Ford WT, Zhang S, Tsyurupa MP, Pastukhov AV, Davankov VA (1997) Solid-state 13CNMR analysis of hypercrosslinked polystyrene. J Polym Sci Part A Polym Chem 35(4):695–701

    Article  CAS  Google Scholar 

  105. Law RV, Sherrington DC, Snape CE, Ando I, Kurosu H (1996) Solid-state 13C MAS NMR studies of hyper-cross-linked polystyrene resins. Macromolecules 29(19):6284–6293

    Article  CAS  Google Scholar 

  106. Moradi MR, Ramezanipour Penchah H, Ghaemi A (2023) O2 capture by benzene‐based hypercrosslinked polymer adsorbent: Artificial neural network and response surface methodology. Can J Chem Eng

  107. Lu X, Cheng Y, Li M, Zou Y, Zhen C, Wu D, Wei X, Li X, Yang X, Gu M (2023) Stable polymer-based solid-state lithium metal battery and its interfacial characteristics revealed by cryogenic transmission electron microscopy. Adv Funct Mater 33(12):2212847

  108. Cheremisinoff NP (1996) Polymer characterization: laboratory techniques and analysis. William Andrew

  109. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452(7185):301–310

    Article  CAS  PubMed  Google Scholar 

  110. Marković G, Marinović-Cincović M, Samaržija-Jovanović S, Jovanović V, Budinski-Simendić J (2020) Crosslinking of polymers: rubber vulcanization. Reactive and Functional Polymers Volume Two: Modification Reactions, Compatibility and Blends 117–134

  111. Zhou X, Huang J, Barr KW, Lin Z, Maya F, Abbott LJ, Colina CM, Svec F, Turner SR (2015) Nanoporous hypercrosslinked polymers containing Tg enhancing comonomers. Polymer 59:42–48

    Article  CAS  Google Scholar 

  112. Vinodh R, Gopi CVVM, Kummara VGR, Atchudan R, Ahamad T, Sambasivam S, Yi M, Obaidat IM, Kim H-J (2020) A review on porous carbon electrode material derived from hypercross-linked polymers for supercapacitor applications. J Energy Storage 32:101831

  113. Kim S-H, Vinodh R, Gopi CVVM, Kummara VGR, Sambasivam S, Obaidat IM, Kim H-J (2020) Novel porous carbon material derived from hypercross-linked polymer of p-xylene for supercapacitors electrode. Mater Lett 263:127222

  114. Yu C, Gong X, Wang M, Li L, Ren S (2023) Hyper-cross-linked nanoparticle reinforced composite polymer electrolytes with enhanced ionic conductivity and thermal stability for lithium-ion batteries. ACS Appl Polym Mater 5(2):1509–1519

    Article  CAS  Google Scholar 

  115. Lu C, Liu S, Xu J, Ding Y, Ouyang G (2016) Exploitation of a microporous organic polymer as a stationary phase for capillary gas chromatography. Anal Chim Acta 902:205–211

    Article  CAS  PubMed  Google Scholar 

  116. Fu S, Yao J, Yang Z, Sun H, Liu W (2018) Silane-based hyper-cross-linked porous polymers and their applications in gas storage and water treatment. J Mater Sci 53(14):10469–10478

    Article  CAS  Google Scholar 

  117. Yang S, Wang X, Tan B (2023) Porosity engineering of hyper-cross-linked polymers based on fine-tuned rigidity in building blocks and high-pressure methane storage applications. Macromolecules 56(3):1213–1222

    Article  CAS  Google Scholar 

  118. Yan C et al (2022) Novel phenothiazine-based hyper-cross-linked porous polymers containing N, S double electrically rich atoms for efficient iodine capture. Microporous Mesoporous Mater 343:112157

    Article  CAS  Google Scholar 

  119. Xu W, Chen M, Yang Y, Chen K, Li Y, Zhang Z, Luo R (2023) Construction of aluminum-porphyrin-based hypercrosslinked ionic polymers (HIPs) by direct knitting approach for CO2 capture and in-situ conversion to cyclic carbonates. ChemCatChem 15(4):e202201441

  120. Guo C, Chen G, Wang N, Wang S, Gao Y, Dong J, Lu Q, Gao F (2023) Construction of multifunctional histidine-based hypercrosslinked hierarchical porous ionic polymers for efficient CO2 capture and conversion. Sep Purif Technol 312:123375

  121. Liu B, Mao C, Zhou Z, Wang Q, Zhou X, Liao Z, Deng R et al (2022) Two facile aniline-based hypercrosslinked polymer adsorbents for highly efficient iodine capture and removal. Int J Mol Sci 24(1):370

    Article  PubMed  PubMed Central  Google Scholar 

  122. Shang Z, Pu F, Zhang X, Jin H, Chen S, Ding Y, Hu A (2023) A hyper-cross-linked aerogel with rigid conjugated polymers as building blocks for efficient iodine capture. ACS Appl Polym Mater 5(5):3827–3834

    Article  CAS  Google Scholar 

  123. Wang W, Zhou M, Yuan D (2017) Carbon dioxide capture in amorphous porous organic polymers. J Mater Chem A 5(4):1334–1347

    Article  Google Scholar 

  124. Sang Y et al (2022) Bifunctional ionic hyper-cross-linked polymers for CO2 capture and catalytic conversion. Appl Surf Sci 585:152663

    Article  CAS  Google Scholar 

  125. Li W et al (2022) Hyper cross-linked polymers containing amino group functionalized polyimide mixed matrix membranes for gas separation. J Appl Polym Sci 139:52171

    Article  CAS  Google Scholar 

  126. Li C et al (2022) Agile construction of bifunctional bipyridine-based hyper-cross-linked ionic polymers for efficient CO2 adsorption and conversion. J CO2 Util 64:102203

    Article  CAS  Google Scholar 

  127. Ahmadi Y, Kim K-H (2022) Recent progress in the development of hyper-cross-linked polymers for adsorption of gaseous volatile organic compounds. Polym Rev 63:1–29

    Google Scholar 

  128. Chanchaona N, Ding L, Lin S, Sarwar S, Dimartino S, Fletcher AJ, Dawson DM, Konstas K, Hill MR, Lau CH (2023) Flow synthesis of hypercrosslinked polymers with additional microporosity that enhances CO2/N2 separation. J Mater Chem A 11(18):9859–9867

    Article  CAS  Google Scholar 

  129. Dawson R, Stöckel E, Holst JR, Adams DJ, Cooper AI (2011) Microporous organic polymers for carbon dioxide capture. Energy Environ Sci 4(10):4239–4245

    Article  CAS  Google Scholar 

  130. Liu H et al (2022) A hyper-cross-linked polymer derived from pitch as an efficient adsorbent for VOCs. High Perform Polym 34:095400832210981

    Article  Google Scholar 

  131. Shao L, Liu M, Huang J, Liu Y-N (2018) CO2 capture by nitrogen-doped porous carbons derived from nitrogen-containing hyper-cross-linked polymers. J Colloid Interface Sci 513:304–313

    Article  CAS  PubMed  Google Scholar 

  132. Azapagic A, Emsley A, Hamerton I (2003) Polymers: the environment and sustainable development. John Wiley & Sons

  133. Cao Y, Wang Y, Zhou F, Huang J, Xu M (2022) Acylamino-functionalized hyper-cross-linked polymers for efficient adsorption removal of phenol in aqueous solution. Sep Purif Technol 303:122229

  134. Wang J, Deng C, Liu Y, Yang D, Gai H, Xiao M, Huang T, Zhu Q, Song H (2023) Hyper cross-linked poly (ionic liquid)s with special anions as “smart materials” for switchable oil-water separation. Appl Surf Sci 613:156007

  135. Wang X et al (2022) Phenolic hydroxyl-functionalized hyper-cross-linked polymers for efficient adsorptive removal of aniline. Sep Purif Technol 305:122443

    Article  Google Scholar 

  136. Yang Z, Wu G, Li Q, Ai H, Yao X, Ji H (2021) Removal of various pollutants from wastewaters using an efficient and degradable hypercrosslinked polymer. Sep Sci Technol 56(5):860–869

    Article  CAS  Google Scholar 

  137. Peng Q, Zhao H, Chen G, Yang Q, Cao X, Xiong S, Xiao A, Li G, Liu B, Liu Q (2023) Synthesis of novel magnetic pitch-based hypercrosslinked polymers as adsorbents for effective recovery of Ag+ with high selectivity. J Environ Manage 339:117763

  138. Masoumi H, Ghaemi A, Gilani HG (2021) Exploiting the performance of hyper-cross-linked polystyrene for removal of multi-component heavy metal ions from wastewaters. JEnviron Chem Eng 9(4):105724

    CAS  Google Scholar 

  139. Masoumi H, Ghaemi A, Ghanadzadeh Gilani H, Ramazanipour Penchah H (2022) Benzene-based hypercross-linked polymers as a highly efficient adsorbent for cadmium removal from aqueous solution. Int J Environ Sci Technol 1–16

  140. Samanta P, Chandra P, Desai AV, Ghosh SK (2017) Chemically stable microporous hyper-cross-linked polymer (HCP): an efficient selective cationic dye scavenger from an aqueous medium. Mater Chem Front 1(7):1384–1388

    Article  CAS  Google Scholar 

  141. Shen R, Du Y, Yang X, Liu H (2020) Silsesquioxanes-based porous functional polymers for water purification. J Mater Sci 55:7518–7529

    Article  CAS  Google Scholar 

  142. Manzar MS, Waheed A, Qazi IW, Blaisi NI, Ullah N (2019) Synthesis of a novel epibromohydrin modified crosslinked polyamine resin for highly efficient removal of methyl orange and eriochrome black T. J Taiwan Inst Chem Eng 97:424–432

    Article  CAS  Google Scholar 

  143. Mansha M, Waheed A, Ahmad T, Kazi IW, Ullah N (2020) Synthesis of a novel polysuccinimide based resin for the ultrahigh removal of anionic azo dyes from aqueous solution. Environ Res 184:109337

  144. Racho P, Namseethan K (2017) Hardness removal from water by modified starch. In: Materials science forum, vol 890. Trans Tech Publications Ltd, pp 159−162

  145. Homayoonfal M, Akbari A, Mehrnia MR (2010) Preparation of polysulfone nanofiltration membranes by UV-assisted grafting polymerization for water softening. Desalination 263(1–3):217–225

    Article  CAS  Google Scholar 

  146. Rahimpour A, Jahanshahi M, Mortazavian N, Madaeni SS, Mansourpanah Y (2010) Preparation and characterization of asymmetric polyethersulfone and thin-film composite polyamide nanofiltration membranes for water softening. Appl Surf Sci 256(6):1657–1663

    Article  CAS  Google Scholar 

  147. Zhou X, Essawy HA, Mohamed MF, Ibrahim HS, Ammar NS (2018) Grafting polymerization of acrylic acid onto chitosan-cellulose hybrid and application of the graft as highly efficient ligand for elimination of water hardness: Adsorption isotherms, kinetic modeling and regeneration. J Environ Chem Eng 6(2):2137–2147

    Article  CAS  Google Scholar 

  148. Liao X, Wang Z, Kong L, Gao X, He J, Huang D, Lin J (2023) Synergistic catalysis of hypercrosslinked ionic polymers with multi-ionic sites for conversion of CO2 to cyclic carbonates. Mol Catal 535:112834

  149. Shi S, Chen C, Wang M, Ma J, Ma H, Xu J (2014) Designing a yolk–shell type porous organic network using a phenyl modified template. Chem Comm 50(65):9079–9082

    Article  CAS  PubMed  Google Scholar 

  150. Wang W et al (2022) Photocatalytic selective amines oxidation coupled with H2O2 production over hyper-cross-linked polymers. J Colloid Interface Sci 616

  151. Šorm D, Bashta B, Blahut J, Císařová I, Sekerová LD, Vyskočilová E, Sedláček J (2023) Porous polymer networks cross-linked by novel copper Schiff base complex: From synthesis to catalytic activity. Eur Polym J 184:111772

  152. Nie X, Zhao Y, Gao W, Liu W, Cheng X, Gao Y, Shang N, Gao S, Wang C (2023) Enhanced photocatalytic activity of hyper-cross-linked polymers toward amines oxidation coupled with H2O2 generation through extending monomer’s conjugation degree. Chem Eur J 29(13):e202203607

  153. Li B, Yang X, Xia L, Majeed MI, Tan B (2013) Hollow microporous organic capsules. Sci Rep 3(1):2128

    Article  PubMed  PubMed Central  Google Scholar 

  154. Han P, Hu K, Wang Y, Li L, Wang P, Zhu W, Gong H, Zhang Z, Zhang S (2023) Dispersive solid-phase extraction of non-steroidal anti-inflammatory drugs in water and urine samples using a magnetic ionic liquid hypercrosslinked polymer composite. J Chromatogr A 1689:463745

  155. Li Q, Jin S, Tan B (2016) Template-mediated synthesis of hollow microporous organic nanorods with tunable aspect ratio. Sci Rep 6(1):1–8

    Google Scholar 

  156. Dai Y, Li Q, Zhang S, Shi S, Li Y, Zhao X, Zhou L, Wang X, Zhu Y, Li W (2021) Smart GSH/pH dual-bioresponsive degradable nanosponges based on β-CD-appended hyper-cross-linked polymer for triggered intracellular anticancer drug delivery. J Drug Deliv Sci Technol 64:102650

  157. Jiang K, Fei T, Zhang T (2014) Humidity sensing properties of LiCl-loaded porous polymers with good stability and rapid response and recovery. Sens Actuators B Chem 199:1–6

    Article  Google Scholar 

Download references

Acknowledgements

Dr. M Amin Abid helped us to conduct this research and guided us through every step. All authors of this review article have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saqlain Raza.

Ethics declarations

Conflicts of interests

We certify that this is an original work and all co-authors have seen and agree with all contents of this review and have no financial interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, S., Nazeer, S., Abid, A. et al. Recent research progress in the synthesis, characterization and applications of hyper cross-linked polymer. J Polym Res 30, 415 (2023). https://doi.org/10.1007/s10965-023-03783-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03783-7

Keywords

Navigation