Skip to main content
Log in

Reactive TiO2 Nanoparticles Compatibilized PLLA/PBSU Blends: Fully Biodegradable Polymer Composites with Improved Physical, Antibacterial and Degradable Properties

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The fully biodegradable polymer blends remain challenges for the application due to their undesirable comprehensive performance. Herein, remarkable combination of superior mechanical performance, bacterial resistance, and controllable degradability is realized in the biodegradable poly(L-lactide)/poly(butylene succinate) (PLLA/PBSU) blends by stabilizing the epoxide group modified titanium dioxide nanoparticles (m-TiO2) at the PLLA-PBSU interface through reactive blending. The m-TiO2 can not only act as interfacial compatibilizer but also play the role of photodegradation catalyst: on the one hand, binary grafted nanoparticles were in situ formed and stabilized at the interface to enhance the compatibility between polymer phases. As a consequence, the mechanical properties of the blend, such as the elongation at break, notched impact strength and tensile yield strength, were simultaneously improved. On the other hand, antibacterial and photocatalytic degradation performance of the composite films was synergistically improved. It was found that the m-TiO2 incorporated PLLA/PBSU films exhibit more effective antibacterial activity than the neat PLLA/PBSU films. Moreover, the analysis of photodegradable properties revealed that that m-TiO2 nanoparticles could act as a photocatalyst to accelerate the photodegradation rate of polymers. This study paves a new strategy to fabricate advanced PLLA/PBSU blend materials with excellent mechanical performance, antibacterial and photocatalytic degradation performance, which enables the potential utilization of fully degradable polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ulery, B. D.; Nair, L. S, Laurencin, C. T. Biomedical applications of biodegradable polymers. J. Polym. Sci., Part B: Polym. Phys. 2014, 49, 832–864.

    Article  Google Scholar 

  2. Van de Velde, K.; Kiekens, P. Biopolymers: overview of several properties and consequences on their applications. Polym. Test. 2002, 21, 433–442.

    Article  CAS  Google Scholar 

  3. Zhao, P.; Liu, W.; Wu, Q.; Ren, J. Preparation, mechanical, and thermal properties of biodegradable polyesters/poly(lactic acid) blends. J. Nanomater. 2010, 4, 287082.

    Google Scholar 

  4. Sinha Ray, S. Polylactide-based bionanocomposites: a promising class of hybrid materials. Acc. Chem. Res. 2012, 45, 1710–1720.

    Article  CAS  PubMed  Google Scholar 

  5. Liminana, P.; Garcia-Sanoguera, D.; Quiles-Carrillo, L.; Balart, R.; Montanes, N. Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Compos. Part B 2018, 144, 153–162.

    Article  CAS  Google Scholar 

  6. Xu, J.; Guo, B. Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnol. J. 2010, 5, 1149–1163.

    Article  CAS  PubMed  Google Scholar 

  7. Ojijo, V.; Sinha Ray, S.; Sadiku, R. Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly[(butylene succinate)-co-adipate]. ACS Appl. Mater. Interfaces 2012, 4, 6690–6701.

    Article  CAS  PubMed  Google Scholar 

  8. Yokohara, T.; Yamaguchi, M. Structure and properties for biomass-based polyester blends of PLA and PBS. Eur. Polym. J. 2008, 44, 677–685.

    Article  CAS  Google Scholar 

  9. Supthanyakul, R.; Kaabbuathong, N.; Chirachanchai, S. Random poly(butylene succinate-co-lactic acid) as a multi-functional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer 2016, 105, 1–9.

    Article  CAS  Google Scholar 

  10. Di Lorenzo, M. L. Poly(L-lactic-acid)/poly(butylene succinate) biobased biodegradable blends. Polym. Rev. 2021, 61, 457–492.

    Article  CAS  Google Scholar 

  11. Wang, Y. P.; Xiao, Y. J.; Duan, J.; Yang, J. H.; Wang, Y.; Zhang, C. L. Accelerated hydrolytic degradation of poly(lactic acid) achieved by adding poly(butylene succinate). Polym. Bull. 2016, 73, 1067–1083.

    Article  CAS  Google Scholar 

  12. Imre, B.; Pukánszky, B. Compatibilization in bio-based and biodegradable polymer blends. Eur. Polym. J. 2013, 49, 1215–1233.

    Article  CAS  Google Scholar 

  13. Harada, M.; Ohya, T.; Iida, K.; Hayashi, H.; Hirano, K.; Fukuda, H. Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J. Appl. Polym. Sci. 2007, 106, 1813–1820.

    Article  CAS  Google Scholar 

  14. Hu, X.; Su, T.; Li, P.; Wang, Z. Blending modification of PBS/PLA and its enzymatic degradation. Polym. Bull. 2018, 75, 533–546.

    Article  CAS  Google Scholar 

  15. Srimalanon, P.; Prapagdee, B.; Markpin, T.; Sombatsompop, N. Effects of DCP as a free radical producer and HPQM as a biocide on the mechanical properties and antibacterial performance of in situ compatibilized PBS/PLA blends. Polym. Test. 2018, 67, 331–41.

    Article  CAS  Google Scholar 

  16. Su, S.; Kopitzky, R.; Tolga, S.; Kabasci, S. Polylactide (PLA) and its blends with poly(butylene succinate) (PBS): a brief review. Polymers 2019, 11, 1193.

    Article  PubMed Central  Google Scholar 

  17. Zhang, B.; Sun, B.; Bian, X.; Li, G.; Chen, X. High melt strength and high toughness PLLA/PBS blends by copolymerization and in situ reactive compatibilization. Ind. Eng. Chem. Res. 2017, 56, 52–62.

    Article  CAS  Google Scholar 

  18. Ji, D.; Liu, Z.; Lan, X.; Wu, F.; Xie, B.; Yang, M. Morphology, rheology, crystallization behavior, and mechanical properties of poly(lactic acid)/poly(butylene succinate)/dicumyl peroxide peactive blends. J. Appl. Polym. Sci. 2014, 131, 39580.

    Article  Google Scholar 

  19. Chen, G. X.; Kim, H. S.; Kim, E. S.; Yoon, J. S. Compatibilization-like effect of reactive organoclay on the poly(L-lactide)/poly(butylene succinate) blends. Polymer 2005, 46, 11829–11836.

    Article  CAS  Google Scholar 

  20. Li, X.; Fu, Z.; Gu, X.; Liu, H.; Li, Y. Interfacially located nanoparticles: barren nanorods versus polymer grafted nanorods. Compos. Part B 2020, 198, 108153.

    Article  CAS  Google Scholar 

  21. Phetwarotai, W.; Phusunti, N. Preparation and characteristics of poly(butylene adipate-co-terephthalate)/polylactide blend films via synergistic efficiency of plasticization and compatibilization. Chinese J. Polym. Sci. 2019, 37, 68–78.

    Article  CAS  Google Scholar 

  22. Fu, Z.; Wang, H.; Zhao, X.; Li, X.; Gu, X.; Li, Y. Flame-retarding nanoparticles as the compatibilizers for immiscible polymer blends: simultaneously enhanced mechanical performance and flame retardancy. J. Mater. Chem. A 2019, 7, 4903–4912.

    Article  CAS  Google Scholar 

  23. Lyly Nyl, I.; Aziz, A. F.; Habibah, Z.; Zaihidi, M. M.; Abdullah, M. H.; Herman, S. H.; Noor, U. M.; Rusop, M. Optical properties and surface morphology of PMMA: TiO2 nanocomposite thin films. Adv. Mater. Res. 2011, 364, 105–109.

    Article  Google Scholar 

  24. Zhao, X.; Wang, H.; Fu, Z. Enhanced interfacial adhesion by reactive carbon nanotubes: new route to high-performance immiscible polymer blend nanocomposites with simultaneously enhanced toughness, tensile strength, and electrical conductivity. ACS Appl. Mater. Interfaces 2018, 10, 8411–8416.

    Article  CAS  PubMed  Google Scholar 

  25. Huang, X.; Zheng, Y.; Jiang, P.; Yin, Y. I. Influence of nanoparticle surface treatment on the electrical properties of cycloaliphatic epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 635–643.

    Article  CAS  Google Scholar 

  26. Cho, H. J.; Jung, D. The application of TiO2 hollow spheres on dye-sensitized solar cells. Bull. Korean Chem. Soc. 2011, 32, 4382–4386.

    Article  CAS  Google Scholar 

  27. Calia, A.; Lettieri, M.; Masieri, M.; Pal, S.; Licciulli, A.; Arima, V. Limestones coated with photocatalytic TiO2 to enhance building surface with self-cleaning and depolluting abilities. J. Cleaner Prod. 2017, 165, 1036–1047.

    Article  CAS  Google Scholar 

  28. Cervantes-Avilés, P.; Ida, J.; Toda, T.; Cuevas-Rodríguez, G. Effects and fate of TiO2 nanoparticles in the anaerobic treatment of wastewater and waste sludge. J. Environ. Manage. 2018, 222, 227–233.

    Article  PubMed  Google Scholar 

  29. Sani, M. A.; Ehsani, A.; Hashemi, M. Whey protein isolate/cellulose nanofibre/TiO2 nanoparticle/rosemary essential oil nanocomposite film: its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration. Int. J. Food Microbiol. 2017, 251, 8–14.

    Article  Google Scholar 

  30. Zhang, X.; Xiao, G.; Wang, Y.; Zhao, Y.; Su, H.; Tan, T. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr. Polym. 2017, 169, 101–107.

    Article  CAS  PubMed  Google Scholar 

  31. Xing, Y.; Li, X.; Zhang, L.; Xu, Q.; Che, Z.; Li, W.; Bai, Y.; Li, K. Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film. Prog. Org. Coat. 2012, 73, 219–224.

    Article  CAS  Google Scholar 

  32. Chawengkijwanich, C.; Hayata, Y. Development of TiO2 powder-coated food packaging film and its ability to inactivate escherichia coli in vitro and in actual tests. Int. J. Food Microbiol. 2008, 123, 288–292.

    Article  CAS  PubMed  Google Scholar 

  33. Luo, S.; Zhang, P.; Gao, D. Preparation and properties of antimicrobial poly(butylene adipate-co-terephthalate)/TiO2 nanocomposites films. J. Macromol. Sci. Part B Phys. 2020, 59, 248–261.

    Article  CAS  Google Scholar 

  34. Venkatesan, R.; Rajeswari, N. TiO2 Nanoparticles/poly(butylene adipate-co-terephthalate) bionanocomposite films for packaging applications. Polym. Adv. Technol. 2017, 28, 1699–1706.

    Article  CAS  Google Scholar 

  35. Antunes, A.; Popelka, A.; Aljarod, O.; Hassan, M. K.; Luyt, A. S. Effects of rutile TiO2 nanoparticles on accelerated weathering degradation of poly(lactic acid). Polymers 2020, 12, 1096.

    Article  CAS  PubMed Central  Google Scholar 

  36. Zhang, Y.; Han, J.; Wu, S.; Qi, Z.; Xu, J.; Guo, B. Synthesis, physical properties and photodegradation of functional poly(butylene succinate) covalently linking UV stabilizing moieties in molecular chains. Colloids Surf. A 2017, 524, 160–168.

    Article  CAS  Google Scholar 

  37. Luo, Y.; Cao, Y.; Guo, G. Effects of TiO2 nanoparticles on the photodegradation of poly(lactic acid). J. Appl. Polym. Sci. 2018, 135, 46509.

    Article  Google Scholar 

  38. Fa, W.; Gong, C.; Tian, L.; Peng, T.; Zan, L. Enhancement of photocatalytic degradation of poly(vinyl chloride) with perchlorinated iron (II) phthalocyanine modified nano-TiO2. J. Appl. Polym. Sci. 2011, 122, 1823–1828.

    Article  CAS  Google Scholar 

  39. Miyauchi, M.; Li, Y.; Shimizu, H. Enhanced degradation in nanocomposites of TiO2 and biodegradable polymer. Environ. Sci. Technol. 2008, 42, 4551–4554.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, H.; Li, F.; Zhu, H. Immobilization of TiO2 nanoparticles on PET fabric modified with silane coupling agent by low temperature hydrothermal method. Fibers Polym. 2013, 14, 43–51.

    Article  CAS  Google Scholar 

  41. Wang, H.; Fu, Z.; Zhao, X. Reactive nanoparticles compatibilized immiscible polymer blends: synthesis of reactive SiO2 with long poly(methyl methacrylate) chains and the in situ formation of Janus SiO2 nanoparticles anchored exclusively at the interface. ACS Appl. Mater. Interfaces 2017, 9, 14358–14370.

    Article  CAS  PubMed  Google Scholar 

  42. Basha, R. K.; Konno, K.; Kani, H.; Kimura, T. Water vapor transmission rate of biomass based film materials. Engineering in Agriculture, Environment and Food. 2011, 4, 37–42.

    Article  Google Scholar 

  43. Decol, M.; Pachekoski, W. M.; Becker, D. Compatibilization and ultraviolet blocking of PLA/PCL blends via interfacial localization of titanium dioxide nanoparticles. J. Appl. Polym. Sci. 2018, 135, 44849.

    Article  Google Scholar 

  44. Le, H. H.; Osswald, K.; Ilisch, S.; Hoang, X. T.; Heinrich, G.; Radusch, H. J. Master curve of filler localization in rubber blends at an equilibrium state. J. Mater. Sci. 2012, 47, 4270–4281.

    Article  CAS  Google Scholar 

  45. Cao, Y.; Xu, P.; Lv, P; Lemstra, P. J.; Cai, X.; Yang, W.; Dong, W.; Chen, M.; Liu, M.; Ma, P. Excellent UV resistance of polylactide by interfacial stereocomplexation with double-shell-structured TiO2 nanohybrids. ACS Appl. Mater. Interfaces 2020, 12, 49090–49100.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Major Project of Natural Science Foundation of Zhejiang Province of China (No. LD19E030001) and National Nature Science Foundation of China (No. 51903071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jin Li.

Electronic supplementary material

10118_2021_2632_MOESM1_ESM.pdf

Reactive TiO2 Nanoparticles Compatibilized PLLA/PBSU Blends: Fully Biodegradable Polymer Composites with Improved Physical, Antibacterial and Degradable Properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, XY., Hu, LM., Fu, ZA. et al. Reactive TiO2 Nanoparticles Compatibilized PLLA/PBSU Blends: Fully Biodegradable Polymer Composites with Improved Physical, Antibacterial and Degradable Properties. Chin J Polym Sci 39, 1645–1656 (2021). https://doi.org/10.1007/s10118-021-2632-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2632-x

Keywords

Navigation