Skip to main content
Log in

Spreading speeds and traveling waves in competitive recursion systems

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

This paper is concerned with the spreading speeds and traveling wave solutions of discrete time recursion systems, which describe the spatial propagation mode of two competitive invaders. We first establish the existence of traveling wave solutions when the wave speed is larger than a given threshold. Furthermore, we prove that the threshold is the spreading speed of one species while the spreading speed of the other species is distinctly slower compared to the case when the interspecific competition disappears. Our results also show that the interspecific competition does affect the spread of both species so that the eventual population densities at the coexistence domain are lower than the case when the competition vanishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen EJ, Allen LJS, Gilliam X (1996) Dispersal and competition models for plants. J Math Biol 34: 455–481

    Article  MATH  MathSciNet  Google Scholar 

  • Aronson DG (1977) The asymptotic speed of propagation of a simple epidemic. In: Fitzgibbon WE, Walker HF (eds) Nonlinear diffusion. Pitman, London, pp 1–23

    Google Scholar 

  • Aronson DG, Weinberger HF (1975) Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Goldstein JA (ed) Partial differential equations and related topics. Lecture notes in mathematics, vol 446. Springer, Berlin, pp 5–49

    Google Scholar 

  • Aronson DG, Weinberger HF (1978) Multidimensional nonlinear diffusion arising in population dynamics. Adv Math 30: 33–76

    Article  MATH  MathSciNet  Google Scholar 

  • Bengtsson J (1989) Interspecific competition increases local extinction rate in a metapopulation system. Nature 340: 713–715

    Article  Google Scholar 

  • Bleasdale JKA (1956) Interspecific competition in higher plants. Nature 178: 150–151

    Article  Google Scholar 

  • Britton N (1986) Reaction-diffusion equations and their applications to biology. Academic Press, San Diego

    MATH  Google Scholar 

  • Carrillo C, Fife P (2005) Spatial effects in discrete generation population models. J Math Biol 50: 161–188

    Article  MATH  MathSciNet  Google Scholar 

  • Cheng CP, Li W-T, Wang ZC (2008) Spreading speeds and traveling waves in a delayed population model with stage structure on a two-dimensional spatial lattice. IMA J Appl Math 73: 592–618

    Article  MATH  MathSciNet  Google Scholar 

  • Cushing JM, Levarge S, Chitnis N, Henson SM (2004) Some discrete competition models and the competitive exclusion principle. J Differ Equ Appl 10: 1139–1151

    Article  MATH  MathSciNet  Google Scholar 

  • Darlington PJ (1972) Competition, competitive repulsion, and coexistence. Proc Natl Acad Sci USA 69: 3151–3155

    Article  Google Scholar 

  • Diekmann O (1978) Thresholds and traveling waves for the geographical spread of infection. J Math Biol 6: 109–130

    Article  MATH  MathSciNet  Google Scholar 

  • Diekmann O (1979) Run for your life. A note on the asymptotic speed of propagation of an epidemic. J Differ Equ 33: 58–73

    Article  MATH  MathSciNet  Google Scholar 

  • Fife P (1979) Mathematical aspects of reacting and diffusing systems. Lecture notes in biomathematics, vol 28. Springer, Berlin

    Google Scholar 

  • Hardin G (1960) The competitive exclusion principle. Science 131: 1292–1297

    Article  Google Scholar 

  • Hsu SB, Zhao XQ (2008) Spreading speeds and traveling waves for nonmonotone integrodifference equations. SIAM J Math Anal 40: 776–789

    Article  MATH  MathSciNet  Google Scholar 

  • Kot M (1992) Discrete-time travelling waves: ecological examples. J Math Biol 30: 413–436

    Article  MATH  MathSciNet  Google Scholar 

  • Leung AW (1989) Systems of nonlinear partial differential equations: applications to biology and engineering. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Lewis MA (2000) Spread rate for a nonlinear stochastic invasion. J Math Biol 41: 430–454

    Article  MATH  MathSciNet  Google Scholar 

  • Lewis MA, Li B, Weinberger HF (2002) Spreading speed and linear determinacy for two-species competiotion models. J Math Biol 45: 219–233

    Article  MATH  MathSciNet  Google Scholar 

  • Li S (1992) Population ecology of freshwater fishes. Agricultural Press of China, Beijing

    Google Scholar 

  • Li B (2009) Some remarks on traveling wave solutions in competition models. Discrete Contin Dyn Syst Ser B 12: 389–399

    Article  MATH  MathSciNet  Google Scholar 

  • Li B, Weinberger HF, Lewis MA (2005) Spreading speeds as slowest wave speeds for cooperative systems. Math Biosci 196: 82–98

    Article  MATH  MathSciNet  Google Scholar 

  • Li W-T, Lin G, Ruan S (2006) Existence of traveling wave solutions in delayed reaction diffusion systems with applications to diffusion-competition systems. Nonlinearity 19: 1253–1273

    Article  MATH  MathSciNet  Google Scholar 

  • Liang X, Zhao XQ (2007) Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm Pure Appl Math 60: 1–40

    Article  MATH  MathSciNet  Google Scholar 

  • Lin G, Li W-T, Ma M (2010) Travelling wave solutions in delayed reaction diffusion systems with applications to multi-species models. Discrete Contin Dyn Syst Ser B 19: 393–414

    MathSciNet  Google Scholar 

  • Lin G, Li W-T, Ruan S Asymptotic stability of monostable wavefronts in discrete-time integral recursions. Sci China Ser A (2010). doi:10.1007/s11425-009-0123-6

  • Lui R (1989a) Biological growth and spread modeled by systems of recursions. I. Mathematical theory. Math Biosci 93: 269–295

    Article  MATH  MathSciNet  Google Scholar 

  • Lui R (1989b) Biological growth and spread modeled by systems of recursions. II. Biological theory. Math Biosci 93: 297–312

    Article  MATH  MathSciNet  Google Scholar 

  • Ma S (2007) Traveling waves for non-local delayed diffusion equations via auxiliary equations. J Differ Equ 237: 259–277

    Article  MATH  Google Scholar 

  • Neubert MG, Caswell H (2000) Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations. Ecology 81: 1613–1628

    Article  Google Scholar 

  • Pan S (2009) Traveling wave solutions in delayed diffusion systems via a cross iteration scheme. Nonlinear Anal RWA 10: 2807–2818

    Article  MATH  Google Scholar 

  • Pao CV (1992) Nonlinear parabolic and elliptic equations. Plenum, New York

    MATH  Google Scholar 

  • Pao CV (2005) Strongly coupled elliptic systems and applications to Lotka–Volterra models with cross-diffusion. Nonlinear Anal TMA 60: 1197–1217

    Article  MATH  MathSciNet  Google Scholar 

  • Radcliffe J, Rass L (1983) Wave solutions for the deterministic nonreducible n-type epidemic. J Math Biol 17: 45–66

    Article  MATH  MathSciNet  Google Scholar 

  • Radcliffe J, Rass L (1984) The uniqueness of wave solutions for the deterministic nonreducible n-type epidemic. J Math Biol 19: 303–308

    MATH  MathSciNet  Google Scholar 

  • Radcliffe J, Rass L (1986) The asymptotic spread of propagation of the deterministic non-reducible n-type epidemic. J Math Biol 23: 341–359

    Article  MATH  MathSciNet  Google Scholar 

  • Smoller J (1994) Shock waves and reaction diffusion equations. Springer, New York

    MATH  Google Scholar 

  • Thieme HR (1979a) Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations. J Reine Angew Math 306: 94–121

    MATH  MathSciNet  Google Scholar 

  • Thieme HR (1979b) Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread. J Math Biol 8: 173–187

    Article  MATH  MathSciNet  Google Scholar 

  • Thieme HR, Zhao XQ (2003) Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction diffusion models. J Differ Equ 195: 430–470

    Article  MATH  MathSciNet  Google Scholar 

  • van den Bosch F, Metz JAJ, Diekmann O (1990) The velocity of spatial population expansion. J Math Biol 28:529–565

    Article  MATH  MathSciNet  Google Scholar 

  • Volpert AI, Volpert VA, Volpert VA (1994) Traveling wave solutions of parabolic systems. Translations of mathematical monographs, vol 140. American Mathematical Society, Providence

    Google Scholar 

  • Weinberger HF (1982) Long-time behavior of a class of biological model. SIAM J Math Anal 13: 353–396

    Article  MATH  MathSciNet  Google Scholar 

  • Weinberger HF (2002) On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J Math Biol 45: 511–548

    Article  MATH  MathSciNet  Google Scholar 

  • Weinberger HF, Lewis MA, Li B (2002) Analysis of linear determinacy for spread in cooperative models. J Math Biol 45: 183–218

    Article  MATH  MathSciNet  Google Scholar 

  • Weinberger HF, Lewis MA, Li B (2007) Anomalous spreading speeds of cooperative recursion systems. J Math Biol 55: 207–222

    Article  MATH  MathSciNet  Google Scholar 

  • Weng P, Huang H, Wu J (2003) Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction. IMA J Appl Math 68: 409–439

    Article  MATH  MathSciNet  Google Scholar 

  • Ye Q, Li Z (1990) Introduction to reaction diffusion equations. Science Press, Beijing

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, G., Li, WT. & Ruan, S. Spreading speeds and traveling waves in competitive recursion systems. J. Math. Biol. 62, 165–201 (2011). https://doi.org/10.1007/s00285-010-0334-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-010-0334-z

Keywords

Mathematics Subject Classification (2000)

Navigation