Skip to main content
Log in

Discrete-time travelling waves: Ecological examples

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Integrodifference equations are discrete-time models that possess many of the attributes of continuous-time reaction-diffusion equations. They arise naturally in population biology as models for organisms with discrete nonoverlapping generations and well-defined growth and dispersal stages. I examined the varied travelling waves that arise in some simple ecologically-interesting integrodifference equations. For a scalar equation with compensatory growth, I observed only simple travelling waves. For carefully chosen redistribution kernels, one may derive the speed and approximate the shape of the observed waveforms. A model with overcompensation exhibited flip bifurcations and travelling cycles in addition to simple travelling waves. Finally, a simple predator-prey system possessed periodic wave trains and a variety of travelling waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, M.: Properties of some density-dependent integrodifference-equation population models. Math. Biosci. 104, 135–157 (1991)

    Google Scholar 

  • Aronson, D. G., Weinberger, H. F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Goldstein, J. A. (eds.) Partial Differential Equations and Related Topics. (Lect. Notes Math., vol. 446, pp. 5–49) Berlin Heidelberg New York: Springer 1975

    Google Scholar 

  • Aronson, D. G.: The asymptotic speed of propagation of a simple epidemic. In: Fitzgibbon, W. E., Walker, H. F. (eds.) Nonlinear Diffusion, pp. 1–23. London: Pitman 1977

    Google Scholar 

  • Atkinson, C., Reuter, G. E. H.: Deterministic epidemic waves. Math. Proc. Camb. Philos. Soc. 80, 315 (1976)

    Google Scholar 

  • Beverton, R. J. H., Holt, S. J.: On the Dynamics of Exploited Fish Populations. Fish Invest. Minist. Argic. Fish. Food (London) Ser. 2 19 (1957)

  • Britton, N. F.: Reaction-Diffusion Equations and Their Applications to Biology. London: Academic Press 1986

    Google Scholar 

  • Brown, K., Carr, J.: Deterministic epidemic waves of critical velocity. Math. Proc. Camb. Philos. Soc. 81, 431–433 (1977)

    Google Scholar 

  • Burton, T. A.: Volterra Integral and Differential Equations. New York: Academic Press 1983

    Google Scholar 

  • Canosa, J.: On a nonlinear diffusion equations describing population growth. IBM J. Res. Dev. 17, 307–313 (1973)

    Google Scholar 

  • Chow, P. L., Tam, W. C.: Periodic and travelling wave solutions to Volterra-Lotka equations with diffusion. Bull. Math. Biol. 12, 643–658 (1976)

    Google Scholar 

  • Clark, C. W.: Mathematical Bioeconomics. New York: Wiley-Interscience 1976

    Google Scholar 

  • Crosby, A. W.: Ecological Imperialism: the Biological Expansion of Europe, 900–1900. Cambridge: Cambridge University Press 1986

    Google Scholar 

  • Cushing, J. M.: Integrodifferential Equations and Delay Models in Population Dynamics. Heidelberg New York: Springer 1974

    Google Scholar 

  • Drake, J. A.: Biological Invasions: a Global Perspective. Chichester: Wiley 1989

    Google Scholar 

  • Dunbar, S. R.: Travelling wave solutions of diffusive Lotka-Volterra equations. J. Math. Biol. 17, 11–32 (1983)

    Article  CAS  Google Scholar 

  • Dunbar, S. R.: Travelling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in R 4. Trans. Am. Math. Soc. 268, 557–594 (1984)

    Google Scholar 

  • El'sgol'ts, L. E., Norkin, S. B.: Introduction to the Theory and Application of Differential Equations with Deviating Arguments. New York: Academic Press 1973

    Google Scholar 

  • Elton, C. S.: The Ecology of Invasions by Animals and Plants. London: Methuen 1958

    Google Scholar 

  • Feigenbaum, M.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25–52 (1978)

    MATH  Google Scholar 

  • Feigenbaum, M.: Universal metric properties of nonlinear transformations. J. Stat. Phys. 21, 669–706 (1979)

    Google Scholar 

  • Feigenbaum, M.: Universal behavior in nonlinear systems. Physica D 7, 16–39 (1983)

    Google Scholar 

  • Fisher, R. A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 353–369 (1937)

    Google Scholar 

  • Groves, R. H.: Ecology of Biological Invasions. Cambridge: Cambridge University Press 1986

    Google Scholar 

  • Hardin, D. P., Takac, P., Webb, G. F.: A comparison of dispersal strategies for survival of spatially heterogeneous populations. SIAM J. Appl. Math. 48, 1396–1423 (1988a)

    Google Scholar 

  • Hardin, D. P., Takac, P., Webb, G. F.: Asymptotic properties of a continuous-space discrete-time population model in a random environment. J. Math. Biol. 26, 361–374 (1988b)

    Google Scholar 

  • Hardin, D. P., Takac, P., Webb, G. F.: Dispersion population models discrete in time and continuous in space. J. Math. Biol. 28, 1–20 (1990)

    Google Scholar 

  • Hengeveld, R.: Dynamics of Biological Invasions. London: Chapman and Hall 1990

    Google Scholar 

  • Howard, L. N., Kopell, N.: Slowly varying waves and shock structures in reaction-diffusion equations. Stud. Appl. Math. 56, 95–145 (1977)

    Google Scholar 

  • Jackson, E. A.: Perspectives of Nonlinear Dynamics. Cambridge: Cambridge University Press 1990

    Google Scholar 

  • Kaneko, K.: Period-doubling of kink-antikink patterns. Prog. Theor. Phys. 72, 480–486 (1984)

    CAS  PubMed  Google Scholar 

  • Kendall, D. G.: Mathematical models of the spread of infection. In: Mathematics and Computer Science in Biology and Medicine. (Med. Res. Counc., pp. 213–225) (1965)

  • Kierstead, H., Slobodkin, L. B.: The size of water masses containing plankton bloom. J. Mar. Res. 12, 141–147 (1953)

    Google Scholar 

  • Kolmogorov, A., Petrovsky, I., Piscounoff, N.: Etude de l'equation de la diffusion avec croissance de la quantite de matiere et son application a un problema biologique. Mosc. Univ. Bull. Math. 1, 1–25 (1937)

    Google Scholar 

  • Kopell, N., Howard, L. N.: Plane wave solutions to reaction-diffusion equations. Stud. Appl. Math. 42, 291–328 (1973)

    Google Scholar 

  • Kot, M.: Diffusion-driven period-doubling bifurcations. BioSystems 22, 279–287 (1989)

    Google Scholar 

  • Kot, M., Schaffer, W. M.: Discrete-time growth-dispersal models. Math. Biosci. 80, 109–36 (1986)

    Google Scholar 

  • Larson, D. A.: Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type. J. Appl. Math. 34, 93–103 (1978)

    Google Scholar 

  • Lui, R.: A nonlinear integral operator arising from a model in population genetics. I. Monotone initial data. SIAM J. Math. Anal. 13, 913–937 (1982a)

    Google Scholar 

  • Lui, R.: A nonlinear integral operator arising from a model in population genetics. II. Initial data with compact support. SIAM J. Math. Anal. 13, 938–953 (1982b)

    Google Scholar 

  • Lui, R.: Existence and stability of travelling wave solutions of a nonlinear integral operator. J. Math. Biol. 16, 199–220 (1983)

    Google Scholar 

  • Lui, R.: A nonlinear integral operator arising from a model in population genetics. III. Heterozygote inferior case. SIAM J. Math. Anal. 16, 1180–1206 (1985)

    Google Scholar 

  • Lui, R.: A nonlinear integral operator arising from a model in population genetics. IV. Clines. SIAM J. Math. Anal. 17, 152–168 (1986)

    Google Scholar 

  • Lui, R.: Biological growth and spread modeled by systems of recursions. I. Mathematical theory. Math. Biosci. 93, 269–295 (1989a)

    Google Scholar 

  • Lui, R.: Biological growth and spread modeled by systems of recursions. II. Biological theory. Math. Biosci. 93, 297–312 (1989b)

    Google Scholar 

  • McKean, H. P.: Application of Brownian motion to the equation of Kolomogorov-Petrovskii-Piskunov. Commun. Pure Appl. Math. 28, 323–331 (1975)

    Google Scholar 

  • May, R. M.: On relationships among various types of population models. Am. Nat. 107, 46–57 (1972)

    Google Scholar 

  • May, R. M.: Biological populations obeying difference equations: Stable points, stable cycles, and chaos. J. Theor. Biol. 49, 511–524 (1975)

    Google Scholar 

  • May, R. M., Oster, G. F.: Bifurcations and dynamic complexity in simple ecological models. Am. Nat. 110, 573–599 (1976)

    Google Scholar 

  • Maynard Smith, J.: Mathematical Ideas in Biology. Cambridge: Cambridge University Press 1968

    Google Scholar 

  • Metropolis, N., Stein, M. L., Stein, P. R.: On finite limit sets of transformations on the unit interval. J. Comb. Theory 15, 25–44 (1973)

    Google Scholar 

  • Mollison, D.: Possible velocities for a simple epidemic. Adv. Appl. Probab. 4, 233–258 (1972a)

    Google Scholar 

  • Mollison, D.: The rate of spatial propagation of simple epidemics. Proc. 6th Berkeley Symp. on Math. Statist. and Prob. 3, 579–614 (1972b)

    Google Scholar 

  • Mollison, D.: Spatial contact models for ecological and epidemic spread. J. R. Stat. Soc. Ser. B 39, 283–326 (1977)

    Google Scholar 

  • Mooney, H. A., Drake, J. A.: Ecology of Biological Invasions of North America and Hawaii. New York: Springer 1986

    Google Scholar 

  • Murray, J. D.: Mathematical Biology. Berlin Heidelberg New York: Springer 1989

    Google Scholar 

  • Neubert, M., Kot, M.: Unusual bifurcations in a simple discrete-time predator-prey model (In preparation)

  • Okubo, A.: Diffusion and Ecological Problems: Mathematical Models. Berlin Heidelberg New York: Springer 1980

    Google Scholar 

  • Oono, Y., Kohmoto, M.: Discrete model of chemical turbulence. Phys. Rev. Lett. 55, 2927–2931 (1985)

    Google Scholar 

  • Oono, Y., Yeung, C.: A cell dynamical system model of chemical turbulence. J. Stat. Phys. 48, 593–644 (1987)

    Google Scholar 

  • Pielou, E. C.: Mathematical Ecology. New York: Wiley-Interscience 1977

    Google Scholar 

  • Ricker, W. E.: Stock and recruitment. J. Fish. Res. Board Can. 11, 559–623 (1954)

    Google Scholar 

  • Roughgarden, J.: Predicting invasions and rates of spread. In: Mooney, H. A., Drake, J. A. (eds.) Ecology of Biological Invasions of North America and Hawaii, pp. 179–188. Berlin Heidelberg New York: Springer 1986

    Google Scholar 

  • Silverman, B. W.: Density Estimation for Statistics and Data Analysis. London: Chapman and Hall 1986

    Google Scholar 

  • Skellam, J. G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)

    Google Scholar 

  • Slatkin, M.: Gene flow and selection in a cline. Genetics 75, 733–756 (1973)

    Google Scholar 

  • Waller, I., Kapral, R.: Spatial and temporal structure in systems of coupled nonlinear oscillators. Phys. Rev. 30, 2047–2055 (1984)

    Google Scholar 

  • Weinberger, H. F.: Asymptotic behavior of a model of population genetics. In: Chadman, J. (ed.) Nonlinear Partial Differential Equations and Applications. (Lect. Notes Math., vol. 648, pp. 47–98) Berlin Heidelberg New York: Springer 1978

    Google Scholar 

  • Weinberger, H. F.: Long-time behavior of a class of biological models. In: Fitzgibbon, W. E. (ed.) Partial Differential Equations and Dynamical Systems. London: Pitman 1984

    Google Scholar 

  • Wolfenbarger, D. O.: Dispersion of small organisms. Am. Midl. Nat. 35, 1–152 (1946)

    Google Scholar 

  • Wolfenbarger, D. O.: Dispersion of small organisms, incidence of viruses and pollen; dispersion of fungus, spores, and insects. Lloydia 22, 1–106 (1959)

    Google Scholar 

  • Wolfenbarger, D. O.: Factors Affecting Dispersal Distances of Small Organisms. Hicksville, N.Y.: Exposition Press 1975

    Google Scholar 

  • Wolfram, S.: Cellular automata. Los Alamos Sci. 3–21 (1983)

  • Wolfram, S.: Cellular automata as models of complexity. Nature 311, 419–424 (1984)

    Google Scholar 

  • Yamada, T., Fujisaka, H.: Stability theory of synchronized motion in coupled-oscillator systems II. Prog. Theory. Phys. 70, 1240–1248 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kot, M. Discrete-time travelling waves: Ecological examples. J. Math. Biol. 30, 413–436 (1992). https://doi.org/10.1007/BF00173295

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00173295

Key words

Navigation