Skip to main content
Log in

Dispersal and competition models for plants

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

New models for seed dispersal and competition between plant species are formulated and analyzed. The models are integrodifference equations, discrete in time and continuous in space, and have applications to annual and perennial species. The spread or invasion of a single plant species into a geographic region is investigated by studying the travelling wave solutions of these equations. Travelling wave solutions are shown to exist in the single-species models and are compared numerically. The asymptotic wave speed is calculated for various parameter values. The single-species integrodifference equations are extended to a model for two competing annual plants. Competition in the two-species model is based on a difference equation model developed by Pakes and Maller [26]. The two-species model with competition and dispersal yields a system of integrodifference equations. The effects of competition on the travelling wave solutions of invading plant species is investigated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adee, S. R., Wender, W. F., Hartnett, D. C.: Competition between Pyrenophora triticirepentis and Septoria nodorum in the wheat leaf as measured with de Wit replacement series. Phytopathology 80, 1177–1182 (1990)

    Google Scholar 

  2. Allen, L. J. S., Allen, E. J., Kunst, C. R. G.: A diffusion model for dispersal of Opuntia imbricata (cholla) on rangeland. J. of Ecol. 79, 1123–1135 (1991)

    Google Scholar 

  3. Andersen, M.: Properties of some density-dependent integrodifference equation population models. Math. Biosci. 104, 135–157 (1991)

    Google Scholar 

  4. Andow, D. A., Kareiva, P. M., Levin, S. A., Okubo, A.: Spread of invading organisms. Landscape Ecology 4, 177–188 (1990)

    Google Scholar 

  5. Bannister, P.: Introduction to Physiological Plant Ecology. New York: John Wiley & Sons 1978

    Google Scholar 

  6. Begon, M., Mortimer, M.: Population Ecology. Second Ed., Massachusetts: Sinauer Associates 1986

    Google Scholar 

  7. de Wit, C. T., van den Bergh, J. P.: Competition between herbage plants. Neth. J. Agric. Sci. 13, 212–221 (1965)

    Google Scholar 

  8. Fisher, R. A.: The wave of advance of advantages genes. Ann. Eugen. London. 7, 355–369 (1937)

    Google Scholar 

  9. Hardin, D. P., Tákač, P., Webb, G. F.: Dispersion population models discrete in time and continuous in space. J. Math. Biol. 28, 1–20 (1990)

    Google Scholar 

  10. Klinkhamer, P. G. L., de Jong, T. J., Metz, J. A. J., Val, J.: Life history tactics of annual organisms: The joint effects of dispersal and delayed germination. Theor. Popul. Biol. 32, 127–156 (1987)

    Google Scholar 

  11. Kot, M.: Discrete-time travelling waves: ecological examples. J. Math. Biol. 30, 413–436 (1992)

    Google Scholar 

  12. Kot, M., Schaffer, W. M.: Discrete-time growth-dispersal models. Math. Biosci. 80, 109–136 (1986)

    Google Scholar 

  13. Lacey, J. R., Olson., B. E.: Environmental and economic impacts of noxious range weeds. In: Noxious Range Weeds (James, L. F., Evans, J. O., Ralphs, M. H., Child, R. D., Eds.) 5–16, Boulder, Co.: Westview Press 1991

    Google Scholar 

  14. Levin, S. A., Cohen, D., Hastings, A.: Dispersal strategies in patchy environments. Theor. Popul. Biol. 26, 165–191 (1984)

    Google Scholar 

  15. Lui, R.: A nonlinear integral operator arising from a model in population genetics, I. Monotone initial data, SIAM J. Math. Anal. 13, 913–937 (1982)

    Google Scholar 

  16. Lui, R.: A nonlinear integral operator arising from a model in population genetics, II. Initial data with compact support. SIAM J. Math. Anal. 13, 938–953 (1982)

    Google Scholar 

  17. Lui, R.: Biological growth and spread modeled by systems of recursions. I. Mathematical theory, Math. Biosci. 93, 269–295 (1989)

    Google Scholar 

  18. Lui, R.: Biological growth and spread modeled by systems of recursions. II. Biological theory, Math. Biosci. 93, 297–312 (1989)

    Google Scholar 

  19. MacDonald, N.: Models of an annual plant population with a seedbank. J. Theor. Biol. 93, 643–653 (1981)

    Google Scholar 

  20. Mollison, D.: Spatial contact models for ecological and epidemic spread. J. R. Statist. Soc. B 39, 283–326 (1977)

    Google Scholar 

  21. Murray, J. D.: Mathematical Biology. Berlin, Heidelberg, New York: Springer-Verlag 1989

    Google Scholar 

  22. Okubo, A.: Diffusion and Ecological Problems: Mathematical Models. Berlin, Heidelberg, New York: Springer-Verlag 1980

    Google Scholar 

  23. Okubo, A., Maim, P. K., Williamson, M. H., Murray, J. D.: On the spatial spread of the grey squirrel in Britain. Proc. Roy. Soc. Lond. B 238, 113–125 (1989)

    Google Scholar 

  24. Pacala, S. W.: Neighborhood models of plant population dynamics. 2. Multi-species models of annuals. Theor. Popul. Biol. 29, 262–292 (1986a)

    Google Scholar 

  25. Pacala, S. W.: Neighborhood models of plant population dynamics. 4. Single-species and multispecies models of annuals with dormant seeds. Am. Natur. 128, 859–878 (1986b)

    Google Scholar 

  26. Pakes, A. G., Maller, R. A.: Mathematical Ecology of Plant Species Competition: A Class of Deterministic Models for Binary Mixtures of Plant Genotypes. Cambridge, New York: Cambridge University Press 1990

    Google Scholar 

  27. Ritland, K.: The joint evolution of seed dormancy and flowering time in annual plants living in variable environments. Theor. Popul. Biol. 24, 213–243 (1983)

    Google Scholar 

  28. Rossiter, R. C., Maller, R. A., Pakes, A. G.: A model of changes in the composition of binary mixtures of subterranean clover strains. Aust. J. Agric. Res. 36, 119–143 (1985)

    Google Scholar 

  29. Schoener, T. W.: Alternatives to Lotka-Volterra competition: models of intermediate complexity. Theor. Popul. Biol. 10, 309–333 (1976)

    Google Scholar 

  30. Skellam, J. G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)

    Google Scholar 

  31. Templeton, A. R., Levin, D. A.: Evolutionary consequences of seed pools. Am. Natur. 114, 232–249 (1979)

    Google Scholar 

  32. Turkington, R., Aarssen, L. W.: Local-scale differentiation as a result of competitive interactions. In: Perspectives on Plant Population Ecology. (Dirzo, R., Sarukhan, J., Eds.), 107–127, Massachusetts: Sinauer Assoc., Inc. 1984

    Google Scholar 

  33. Venable, D. L., Brown, J. S.: The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. Am. Natur. 131, 360–384 (1988)

    Google Scholar 

  34. Weinberger, H. F.: Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, E.J., Allen, L.J.S. & Gilliam, X. Dispersal and competition models for plants. J. Math. Biol. 34, 455–481 (1996). https://doi.org/10.1007/BF00167944

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00167944

Keywords

Navigation