Skip to main content
Log in

Thresholds and travelling waves for the geographical spread of infection

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

A nonlinear integral equation of mixed Volterra-Fredholm type describing the spatio-temporal development of an epidemic is derived and analysed. Particular attention is paid to the hair-trigger effect and to the travelling wave problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, D. G., Weinberger, H. F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Partial Differential Equations and Related Topics (J. A. Goldstein, ed.), Lecture Notes in Math.446, 5–49. Berlin: Springer, 1975

    Google Scholar 

  2. Aronson, D. G., Weinberger, H. F.: Multidimensional nonlinear diffusion arising in population genetics. To appear in Advances in Math.

  3. Atkinson, C., Reuter, G. E. H.: Deterministic epidemic waves. Math. Proc. Camb. Phil. Soc.80, 315–330 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Diekmann, O.: Limiting behaviour in an epidemic model. J. Nonl. Anal.-Theory Meth. Appl.1, 459–470 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  5. Diekmann, O., Kaper, H. G.: On the bounded solutions of a nonlinear convolution equation. To appear in J. Nonl. Anal.-Theory Meth. Appl.

  6. Essén, M.: Studies on a convolution inequality. Ark. Mat.5, 113–152 (1963)

    Google Scholar 

  7. Feller, W.: An Introduction to Probability Theory and Its Applications. Vol. II. New York: Wiley, 1966

    MATH  Google Scholar 

  8. Hadeler, K. P., Rothe, F.: Travelling fronts in nonlinear diffusion equations. J. Math. Biol.2, 251–263 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  9. Hale, J. K.: Ordinary Differential Equations. New York: Wiley, 1969

    MATH  Google Scholar 

  10. Hoppensteadt, F.: Mathematical Theories of Populations: Demographics, Genetics and Epidemics. SIAM Regional Conference Series in Applied Mathematics, Vol. 20. Philadelphia: SIAM, 1975

    MATH  Google Scholar 

  11. Kendall, D. G.: Discussion of ‘Measles periodicity and community size’ by M. S. Bartlett. J. Roy. Statist. Soc. A120, 64–67 (1957)

    Article  Google Scholar 

  12. Kendall, D. G.: Mathematical models of the spread of infection. In: Mathematics and Computer Science in Biology and Medicine, pp. 213–224. London: Medical Research Council, 1965

    Google Scholar 

  13. Kermack, W. O., McKendrick, A. G.: A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. A115, 700–721 (1927)

    MATH  Google Scholar 

  14. Metz, J. A. J.: The epidemic in a closed population with all susceptibles equally vulnerable; some results for large susceptible populations and small initial infections. To appear in Acta Biotheoretica

  15. Mollison, D.: Possible velocities for a simple epidemic. Advances in Applied Prob.4, 233–257 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mollison, D.: The rate of spatial propagation of simple epidemics. In: Proc. Sixth Berkeley Symposium on Mathematical Statistics and Probability (L. M. le Cam, J. Neyman, E. L. Scott, eds.), Vol. III, pp. 579–614. Berkeley: Univ. of California Press, 1972

    Google Scholar 

  17. Titchmarsh, E. C.: Introduction to the Theory of Fourier Integrals. Oxford: Clarendon Press, 1937

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diekmann, O. Thresholds and travelling waves for the geographical spread of infection. J. Math. Biology 6, 109–130 (1978). https://doi.org/10.1007/BF02450783

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02450783

Keywords

Navigation