Skip to main content
Log in

A pH-Dependent Gene Expression Enables Bacillus amyloliquefaciens MBNC to Adapt to Acid Stress

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Acid tolerance response (ATR), a process by which bacteria optimize their growth conditions for cellular functions, is a well-characterized bacterial stress response. A bacterial isolate identified, as Bacillus amyloliquefaciens MBNC, was isolated from acidic soil and studied for its acid tolerance response under several range of acidic stress conditions imposed through inorganic acid, organic acid, acetate buffer, and soil extract. The ability of the B. amyloliquefaciens MBNC to tolerate extreme acidic conditions (pH 4.5) increased when exposed to moderate-acidic pH (pH 5.5). Along with ATR, the bacterial cell density was also critical to its ability to tolerate low pH as the cells of late log phase were more tolerant to low pH stress compared to the early log phase cells. A comparative expression study of 28 genes of B. amyloliquefaciens MBNC was assessed in cells grown in neutral (pH 7.0) and acidic condition (pH 4.5) through qRT-PCR. Among the 28 genes analyzed, 24 genes showed increased expression whereas the expression of 4 genes was downregulated under acid stress indicating to the involvement of the genes in acid stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Russell NJ, Evans RI, ter Steeg PF et al (1995) Membranes as a target for stress adaptation. Int J Food Microbiol 28:255–261. https://doi.org/10.1016/0168-1605(95)00061-5

    Article  CAS  PubMed  Google Scholar 

  2. Brown JL, Ross T, McMeekin TA, Nichols PD (1997) Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int J Food Microbiol 37:163–173. https://doi.org/10.1016/S0168-1605(97)00068-8

    Article  CAS  PubMed  Google Scholar 

  3. Waterman SR, Small PLC (2003) The glutamate-dependent acid resistance system of Escherichia coli and Shigella flexneri is inhibited in vitro by L-trans-pyrrolidine-2,4-dicarboxylic acid. FEMS Microbiol Lett 224:119–125. https://doi.org/10.1016/S0378-1097(03)00427-0

    Article  CAS  PubMed  Google Scholar 

  4. Griswold AR, Chen YYM, Burne RA (2004) Analysis of an agmatine deiminase gene cluster in Streptococcus mutans UA159. J Bacteriol 186:1902–1904. https://doi.org/10.1128/JB.186.6.1902-1904.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davis MJ, Coote PJ, O’Byrne CP (1996) Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growth-phase-dependent acid resistance. Microbiology 142:2975–2982. https://doi.org/10.1099/13500872-142-10-2975

    Article  CAS  PubMed  Google Scholar 

  6. Nakano S, Fukaya M (2008) Analysis of proteins responsive to acetic acid in Acetobacter: Molecular mechanisms conferring acetic acid resistance in acetic acid bacteria. Int J Food Microbiol 125:54–59. https://doi.org/10.1016/j.ijfoodmicro.2007.05.015

    Article  CAS  PubMed  Google Scholar 

  7. Stingl K, Altendorf K, Bakker EP (2002) Acid survival of Helicobacter pylori: how does urease activity trigger cytoplasmic pH homeostasis? Trends Microbiol 10:70–74. https://doi.org/10.1016/S0966-842X(01)02287-9

    Article  CAS  PubMed  Google Scholar 

  8. Kanjee U, Houry WA (2013) Mechanisms of acid resistance in Escherichia coli. Annu Rev Microbiol 67:65–81. https://doi.org/10.1146/annurev-micro-092412-155708

    Article  CAS  PubMed  Google Scholar 

  9. Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343. https://doi.org/10.1038/nrmicro2549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mols M, Abee T (2011) Primary and secondary oxidative stress in Bacillus. Environ Microbiol 13:1387–1394. https://doi.org/10.1111/j.1462-2920.2011.02433.x

    Article  CAS  PubMed  Google Scholar 

  11. Goswami G, Panda D, Samanta R et al (2018) Bacillus megaterium adapts to acid stress condition through a network of genes: insight from a genome-wide transcriptome analysis. Sci Rep 8:16105. https://doi.org/10.1038/s41598-018-34221-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  13. Vos P, Garrity G, Jones D et al (2011) Bergey’s Manual of Systematic Bacteriology: The Firmicutes, 2nd edn. Springer Science & Business Media, New York, United States

    Google Scholar 

  14. Kunitsky C, Osterhout G, Sasser M (2006) Identification of microorganisms using fatty acid methyl ester (FAME) analysis and the Midi Sherlock® microbial identification system. Encycl Rapid Microbiol Methods 3:1–18

    Google Scholar 

  15. Hazarika DJ, Gautom T, Parveen A et al (2020) Mechanism of interaction of an endofungal bacterium Serratia marcescens D1 with its host and non-host fungi. PLoS ONE 15:1–19. https://doi.org/10.1371/journal.pone.0224051

    Article  CAS  Google Scholar 

  16. Chowdhury N, Goswami G, Hazarika S et al (2018) Microbial dynamics and nutritional status of namsing: a traditional fermented fish product of mishing community of Assam. Proc Natl Acad Sci India Sect B Biol Sci. https://doi.org/10.1007/s40011-018-1022-9

    Article  Google Scholar 

  17. Goswami G, Deka P, Das P et al (2017) Diversity and functional properties of acid-tolerant bacteria isolated from tea plantation soil of Assam. 3 Biotech. https://doi.org/10.1007/s13205-017-0864-9

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goswami G, Bora SSS, Parveen A et al (2017) Identification and functional properties of dominant lactic acid bacteria isolated from Kahudi, a traditional rapeseed fermented food product of Assam, India. J Ethn Foods 4:187–197. https://doi.org/10.1016/j.jef.2017.08.008

    Article  Google Scholar 

  19. Hazarika DJ, Goswami G, Gautom T et al (2019) Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. BMC Microbiol 19:71. https://doi.org/10.1186/s12866-019-1440-8

    Article  PubMed  PubMed Central  Google Scholar 

  20. Deka P, Goswami G, Das P et al (2019) Bacterial exopolysaccharide promotes acid tolerance in Bacillus amyloliquefaciens and improves soil aggregation. Mol Biol Rep 46:1079–1091. https://doi.org/10.1007/s11033-018-4566-0

    Article  CAS  PubMed  Google Scholar 

  21. Desriac N, Broussolle V, Postollec F et al (2013) Bacillus cereus cell response upon exposure to acid environment: toward the identification of potential biomarkers. Front Microbiol 4:284. https://doi.org/10.3389/fmicb.2013.00284

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mols M, Abee T (2011) Bacillus cereus responses to acid stress. Environ Microbiol 13:2835–2843. https://doi.org/10.1111/j.1462-2920.2011.02490.x

    Article  CAS  PubMed  Google Scholar 

  23. Hecker M, Völker U (2001) General stress response of Bacillus subtilis and other bacteria. Adv Microb Physiol 44:35–91

    Article  CAS  Google Scholar 

  24. Lin J, Lee IS, Frey J et al (1995) Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol 177:4097–4104. https://doi.org/10.1128/JB.177.14.4097-4104.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Foster JW, Hall HK (1990) Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol 172:771–778. https://doi.org/10.1128/jb.172.2.771-778.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goodson M, Rowbury RJ (1989) Resistance of acid-habituated Escherichia coli to organic acids and its medical and applied significance. Lett Appl Microbiol 8:211–214. https://doi.org/10.1111/j.1472-765X.1989.tb00250.x

    Article  CAS  Google Scholar 

  27. Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898–907. https://doi.org/10.1038/nrmicro1021

    Article  CAS  PubMed  Google Scholar 

  28. Thomassin S, Jobin MP, Schmitt P (2006) The acid tolerance response of Bacillus cereus ATCC14579 is dependent on culture pH, growth rate and intracellular pH. Arch Microbiol 186:229–239. https://doi.org/10.1007/s00203-006-0137-1

    Article  CAS  PubMed  Google Scholar 

  29. Wilks JC, Kitko RD, Cleeton SH et al (2009) Acid and base stress and transcriptomic responses in Bacillus subtilis. Appl Environ Microbiol 75:981–990. https://doi.org/10.1128/AEM.01652-08

    Article  CAS  PubMed  Google Scholar 

  30. Halstead FD, Rauf M, Moiemen NS et al (2015) The antibacterial activity of acetic acid against biofilm-producing pathogens of relevance to burns patients. PLoS ONE 10:e0136190. https://doi.org/10.1371/journal.pone.0136190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. King T, Lucchini S, Hinton JCD, Gobius K (2010) Transcriptomic analysis of Escherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses. Appl Environ Microbiol 76:6514–6528. https://doi.org/10.1128/AEM.02392-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gayán E, Condón S, Álvarez I et al (2013) Effect of pressure-induced changes in the ionization equilibria of buffers on inactivation of Escherichia coli and staphylococcus aureus by high hydrostatic pressure. Appl Environ Microbiol 79:4041–4047. https://doi.org/10.1128/AEM.00469-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Popham DL, Young KD (2003) Role of penicillin-binding proteins in bacterial cell morphogenesis. Curr Opin Microbiol 6:594–599. https://doi.org/10.1016/j.mib.2003.10.002

    Article  CAS  PubMed  Google Scholar 

  34. Jordan S, Hutchings MI, Mascher T (2008) Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 32:107–146. https://doi.org/10.1111/j.1574-6976.2007.00091.x

    Article  CAS  PubMed  Google Scholar 

  35. Typas A, Banzhaf M, Gross CA, Vollmer W (2011) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10:123. https://doi.org/10.1038/nrmicro2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Siewering K, Jain S, Friedrich C et al (2014) Peptidoglycan-binding protein TsaP functions in surface assembly of type IV pili. Proc Natl Acad Sci USA 111:953–961. https://doi.org/10.1073/pnas.1322889111

    Article  CAS  Google Scholar 

  37. Skerker JM, Prasol MS, Perchuk BS et al (2005) Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol. https://doi.org/10.1371/journal.pbio.0030334

    Article  PubMed  PubMed Central  Google Scholar 

  38. Krüger E, Zühlke D, Witt E et al (2001) Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J 20:852–863. https://doi.org/10.1093/emboj/20.4.852

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gerth U, Krüger E, Derré I et al (1998) Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol Microbiol 28:787–802. https://doi.org/10.1046/j.1365-2958.1998.00840.x

    Article  CAS  PubMed  Google Scholar 

  40. Balomenou S, Fouet A, Tzanodaskalaki M et al (2013) Distinct functions of polysaccharide deacetylases in cell shape, neutral polysaccharide synthesis and virulence of Bacillus anthracis. Mol Microbiol 87:867–883. https://doi.org/10.1111/mmi.12137

    Article  CAS  PubMed  Google Scholar 

  41. Fukushima T, Yamamoto H, Atrih A et al (2002) A Polysaccharide deacetylase gene ( pdaA ) Is required for germination and for production of muramic δ-lactam residues in the spore cortex of Bacillus subtilis. J Bacteriol 184:6007–6015. https://doi.org/10.1128/JB.184.21.6007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arnaouteli S, Giastas P, Andreou A et al (2015) Two putative polysaccharide deacetylases are required for osmotic stability and cell shape maintenance in Bacillus anthracis. J Biol Chem 290:13465–13478. https://doi.org/10.1074/jbc.M115.640029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Setlow P (2014) Germination of spores of Bacillus species: what we know and do not know. J Bacteriol 196:1297–1305. https://doi.org/10.1128/JB.01455-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vlamakis H, Chai Y, Beauregard P et al (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11:157–168. https://doi.org/10.1038/nrmicro2960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Molle V, Fujita M, Jensen ST et al (2003) The Spo0A regulon of Bacillus subtilis. Mol Microbiol 50:1683–1701. https://doi.org/10.1046/j.1365-2958.2003.03818.x

    Article  CAS  PubMed  Google Scholar 

  46. Eichenberger P, Fujita M, Jensen ST et al (2004) The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. https://doi.org/10.1371/journal.pbio.0020328

    Article  PubMed  PubMed Central  Google Scholar 

  47. Steil L, Serrano M, Henriques AO, Völker U (2005) Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology 151:399–420. https://doi.org/10.1099/mic.0.27493-0

    Article  CAS  PubMed  Google Scholar 

  48. Mielich-Süss B, Schneider J, Lopez D (2013) Overproduction of flotillin influences cell differentiation and shape in Bacillus subtilis. MBio 4:1–12. https://doi.org/10.1128/mBio.00719-13

    Article  CAS  Google Scholar 

  49. Bach JN, Bramkamp M (2013) Flotillins functionally organize the bacterial membrane. Mol Microbiol 88:1205–1217. https://doi.org/10.1111/mmi.12252

    Article  CAS  PubMed  Google Scholar 

  50. Dowd BCA, Hoch JA (1991) Regulation of the oxidative stress response by the hpr gene in Bacillus subtilis. J Gen Microbiol 137:1121–1125

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Department of Biotechnology (DBT), Government of India and DBT-North East Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University (AAU), Jorhat, India, for financial support. The authors are grateful to Dr. M. K. Modi, Head, Department of Agricultural Biotechnology and Dr. B. K. Sarmah, Indian Council of Agricultural Research (ICAR) National Professor, DBT-NECAB, AAU, Jorhat for providing the indispensable facilities and suggestions.

Funding

This research work was supported by funds received from the Department of Biotechnology (DBT), Government of India for the project “Screening of soil microbes for acid tolerance gene” under DBT-NECAB, Assam Agricultural University (AAU), Jorhat, India.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and Methodology: MB, NC, and GG; Formal Analysis and Investigation: NC and GG; Resources: RCB, MB; Data Curation: GG; Writing—Original Draft Preparation: NC; Writing—Review & Editing, GG, RCB, and MB; Visualization: NC; Supervision: MB; RCB; Project Administration: MB.

Corresponding author

Correspondence to Madhumita Barooah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, N., Goswami, G., Boro, R.C. et al. A pH-Dependent Gene Expression Enables Bacillus amyloliquefaciens MBNC to Adapt to Acid Stress. Curr Microbiol 78, 3104–3114 (2021). https://doi.org/10.1007/s00284-021-02573-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02573-y

Navigation