Skip to main content

Advertisement

Log in

Diversity and functional properties of acid-tolerant bacteria isolated from tea plantation soil of Assam

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this study, we report on the bacterial diversity and their functional properties prevalent in tea garden soils of Assam that have low pH (3.8–5.5). Culture-dependent studies and phospholipid fatty acid analysis revealed a high abundance of Gram-positive bacteria. Further, 70 acid-tolerant bacterial isolates characterized using a polyphasic taxonomy approach could be grouped to the genus Bacillus, Lysinibacillus, Staphylococcus, Brevundimonas, Alcaligenes, Enterobacter, Klebsiella, Escherichia, and Aeromonas. Among the 70 isolates, 47 most promising isolates were tested for their plant growth promoting activity based on the production of Indole Acetic Acid (IAA), siderophore, and HCN as well as solubilization of phosphate, zinc, and potassium. Out of the 47 isolates, 10 isolates tested positive for the entire aforesaid plant growth promoting tests and further tested for quantitative analyses for production of IAA, siderophore, and phosphate solubilization at the acidic and neutral condition. Results indicated that IAA and siderophore production, as well as phosphate solubilization efficiency of the isolates decreased significantly (P ≤ 0.05) in the acidic environment. This study revealed that low soil pH influences bacterial community structure and their functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizobacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  Google Scholar 

  • Alam SI, Bansod S, Goel AK, Singh L (2011) Characterization of an environmental strain of Bacillus thuringiensis from a hotspring in western Himalayas. Curr Microbiol 62:547–556. doi:10.1007/s00284-010-9743-x

    Article  CAS  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20(6):642–650

    Article  CAS  Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth-stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  • Balamurugan A, Jayanthi R, Nepolean P, Pallavi V, Premkumar R (2011) Studies on cellulose degrading bacteria in tea garden soils. Afr J Plant Sci 5(1):22–27

    CAS  Google Scholar 

  • Bandyopadhyay S, Dutta D, Chattopadhyay T, Reza SK, Dutta DP, Baruah U, Sarkar D, Singh SK (2014) Characterization and classification of some tea-growing soils of Jorhat district, Assam. Agropedology 24(02):138–145

    Google Scholar 

  • Bano N, Musarrat J (2003) Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol 46:0324–0328

    Article  CAS  Google Scholar 

  • Barthakur BK, Sarmah SR, Dutta P, Singh K (2004) Effect of microbial bioagents in controlling certain pest and diseases of tea. J Mycopathol Res 42(1):83–88

    Google Scholar 

  • Baruah BK, Das B, Medhi C, Misra AK (2013) Fertility status of soil in the tea garden belts of Golaghat district, Assam, India. J Chem. doi:10.1155/2013/983297

    Google Scholar 

  • Bashan Y, Kamnev AA, de-Bashan LE (2013) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. BiolFertil Soils 49:465–479. doi:10.1007/s00374-012-0737-7

    Article  CAS  Google Scholar 

  • Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49:359–378

    CAS  Google Scholar 

  • Booth IR (2002) Stress and the single cell: Intra-population diversity is a mechanism to ensure survival upon exposure to stress. Int J Food Microbiol 178:19–30

    Article  Google Scholar 

  • Borsodi AK, Kiss RI, Cech G, Vajna B, Tóth EM, Márialigeti K (2010) Diversity and activity of cultivable aerobic planktonic bacteria of a saline lake located in Sovata, Romania. Folia Microbiol 55(5):461–466

    Article  CAS  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic and available forms of phosphorus in soils. Soil Sci 59(1):39–46

    Article  CAS  Google Scholar 

  • Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) (2005) Bergey’s manual of systematic bacteriology, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  • Buyer JS, Sasser M (2012) High throughput phospholipid fatty acid analysis of soils. Appl Soil Ecol 61:127–130. doi:10.1016/j.apsoil.2012.06.005

    Article  Google Scholar 

  • Chen YY, Clancy KA, Burne RA (1996) Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque streptococcus. Infect Immun 64:585–592

    CAS  Google Scholar 

  • Chen YY, Weaver CA, Mendelsohn DR, Burne RA (1998) Transcriptional regulation of the Streptococcus salivarius 57I urease operon. J Bacteriol 180:5769–5775

    CAS  Google Scholar 

  • Cihan AC, Tekin N, Ozcan B, Cokmus C (2012) The genetic diversity of genus Bacillus and the related genera revealed by 16S rRNA Gene sequences and ARDRA analyses isolated from geothermal regions of Turkey. Braz J Microbiol 43(1):309–324. doi:10.1590/S1517-838220120001000037

    Article  CAS  Google Scholar 

  • Deka A (2016) Aproteogenomic study to elucidate acid tolerance mechanism in soil bacteria. Ph. D thesis, Assam Agricultural University, Jorhat

  • Dikshit KR, Dikshit JK (2014) North-East India: land, people and economy. Springer, Dordrecht. doi:10.1007/978-94-007-7055-3_11

    Book  Google Scholar 

  • Dimkpa CO, Svatos A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25

    Article  CAS  Google Scholar 

  • Duncan JMA, Saikia SD, Gupta N, Biggs M (2016) Observing climate impacts on tea yield in Assam, India. Appl Geogr 77:64–71. doi:10.1016/j.apgeog.2016.10.004

    Article  Google Scholar 

  • Dutta J, Bhuyan B, Misra AK (2008) Chemical estimation of soil fertility status in and around the tea gardens of Gohpur sub-division. Assam. Int J Chem Sci 6(2):1099–1105

    CAS  Google Scholar 

  • Economic survey, Govt. of Assam (2013–2014) (http://www.planassam.info/economic_survey_assam_13-14/Economic_Survey_%202013-14.pdf (visited on 23 May 2017)

  • Ehrhardt CJ, Chu V, Brown TC, Simmons TL, Swan BK, Bannan J, Robertson JM (2010) Use of fatty acid methyl ester profiles for discrimination of Bacillus cereus T-Strain spores grown on different media. Appl Environ Microbiol 76:1902–1912

    Article  CAS  Google Scholar 

  • Fasim F, Ahmed N, Parsons N, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213:1–6

    Article  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103(3):626–631. doi:10.1073/pnas.0507535103

    Article  CAS  Google Scholar 

  • Fox GE, Wisotzkey JD, Jurtshunk P (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:66–170

    Article  Google Scholar 

  • Garrity GM, Holt JG (2001) The road map to the Manual. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 119–166

    Chapter  Google Scholar 

  • Giongo A, Beneduzi Anelise AA, Vargas LK, Stroschein MR, Eltz FL, Bodanese-Zanettini MH, Passaglia LMP (2010) Isolation and characterization of two plant growth-promoting bacteria from the rhizoplane of a legume (Lupinus albescens) in sandy soil. Revista Brasileira de Ciência do Solo 34(2):361–369. doi:10.1590/S0100-06832010000200009

    Article  CAS  Google Scholar 

  • Gogoi S, Mishra G, Deka AK (2016) Soil nutrient dynamics in tea agroforestry ecosystem of Golaghat district of Assam, India. Agric Sci Digest 36(3):185–190. doi:10.18805/asd.v0iof.11154

    Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent Pseudomonas. Nat Rev Microbiol 3(4):307–319

    Article  CAS  Google Scholar 

  • Havlin J, Beaton J, Tisdale SL, Nelson W (1999) Soil fertility and fertilizers. An introduction to nutrient management, 6th edn. Prentice Hall, New Jersey

    Google Scholar 

  • Huidrom P, Sharma GD (2014) Microbial bioremediation of pesticide residues in tea soil. Int Interdisc Res J 4:261–275

    Google Scholar 

  • Islam S, Akanda AM, Prova A, Islam MT, Hossain MM (2015) Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol 6:1360. doi:10.3389/fmicb.2015.01360

    Google Scholar 

  • Jackson ML (1973) Soil chemical analysis. New Delhi, Printice Hall of India, p 392

    Google Scholar 

  • Jha Y, Subramanian RB (2014) Characterization of root-associated bacteria from paddy band its growth-promotion efficacy. 3 Biotech 4:325–330. doi:10.1007/s13205-013-0158-9

    Article  Google Scholar 

  • Kassambara A, Mundt F (2016) Factoextra: extract and visualize the results of multivariate data analyses, R package version 1.0.3. https://CRAN.R-project.org/package=factoextra

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167(8):493–499. doi:10.1016/j.micres.2012.05.002

    Article  CAS  Google Scholar 

  • Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246

    Article  CAS  Google Scholar 

  • Ludwig W, Klenk HP (2001) Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 49–65

    Chapter  Google Scholar 

  • Majeed A, Abbasi MK, Hameed S, Imran A, Rahim N (2015) Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol 6:198. doi:10.3389/fmicb.2015.00198

    Article  Google Scholar 

  • Mansour FA, Ildesuguy HS, Hamedo HA (1994) Studies on plant growth regulators and enzyme production by some bacteria. J Qatar Univ Sci 14:81–288

    Google Scholar 

  • Nath TN (2014) Status of macronutrients (N, P and K) in some selected tea growing soil of Sivasagar district of Assam, India. Int Res J Chem 7:12–29

    Google Scholar 

  • O’Leary WM, Wilkinson SG (1988) Gram-positive bacteria. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 117–201

    Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3(1):25–31

    Google Scholar 

  • Patel BK, Jain SA, Jagtap MS, Patel KP, Patel DH (2014) Study of presence of available potassium in soil of LunawadaTaluka territory. Arch Appl Sci Res 6(1):79–84

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42(3):207–220

    Article  CAS  Google Scholar 

  • Phukan I, Madhab M, Sarmah SR, Bordoloi M, Nair SC, Dutta P et al (2012) Exploitation of PGP microbes of tea for improvement of plant growth and pest suppression: a novel approach. Two Bud 59(1):69–74

    Google Scholar 

  • Pindi PKT, Sultana PKV (2014) Plant growth regulation of Bt-cotton through Bacillus species. 3 Biotech 4:305–315. doi:10.1007/s13205-013-0154-0

    Article  Google Scholar 

  • Prasanth KM, Sreekala PP, Sandip S, Kripa PK, Sreejesh KK (2013) Heavy metals and its fraction as in soils of Koratty region, Kerala. Res J Recent Sci 2(ISC-2012):171–176

    CAS  Google Scholar 

  • Quivey RG, Faustoferri R Jr, Monahan K, Marquis R (2000) Shifts in membrane fatty acid profiles associated with acid adaptation of Streptococcus mutans. FEMS Microbiol Lett 189:89–92

    Article  CAS  Google Scholar 

  • Raghavendra P, Halami PM (2009) Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine. Int J Food Microbiol 133(1–2):129–134

    Article  CAS  Google Scholar 

  • Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168:305–312. doi:10.1111/j.14698137.2005.01558.x

    Article  CAS  Google Scholar 

  • Roe AJ, McLaggan D, Davidson I, O’Byrne C, Booth IR (1998) Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J Bacteriol 180:767–772

    CAS  Google Scholar 

  • Rogelio Garcidueñas P, Carlos C (1996) Microbial interactions with aluminium. Biometals 9(3):311–316

    Article  Google Scholar 

  • Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75(6):1589–1596. doi:10.1128/AEM.02775-08

    Article  CAS  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4(10):1340–1351. doi:10.1038/ismej.2010.58

    Article  Google Scholar 

  • Russell JB, Diez-Gonzalez F (1998) The effects of fermentation acids on bacterial growth. Adv Microb Physiol 39:205–234

    Article  CAS  Google Scholar 

  • Sang HJ, Mayank AG, Se-Chul C (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98

    Article  Google Scholar 

  • Sato JH, de Figueiredo CC, Marchão RL, Madari BE, Benedito LEC, Busato JG, de Mendes SD (2014) Methods of soil organic carbon determination in Brazilian savannah soils. Sci Agric 71(4):302–308. doi:10.1590/0103-9016-2013-0306

    Article  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  Google Scholar 

  • Sebastien L, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25(1):1–18

    Google Scholar 

  • Sharma A, Singh P, Kumar S, Kashyap PL, Srivastava AK, Chakdar H, Singh RN, Kaushik R, Saxena AK, Sharma AK (2015) Deciphering diversity of salt-tolerant Bacilli from saline soils of eastern Indo-gangetic plains of India. Geomicrobiol J 32(2):170–180. doi:10.1080/01490451.2014.938205

    Article  CAS  Google Scholar 

  • Stratford M, Anslow PA (1998) Evidence that sorbic acid does not inhibit yeast as a classic ‘weak acid preservative’. Lett Appl Microbiol 27:203–206

    Article  CAS  Google Scholar 

  • Suutari M, Laakso S (1994) Microbial fatty acids and thermal adaptation. Crit Rev Microbiol 20:285–328

    Article  CAS  Google Scholar 

  • Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, Adamoski D, Kava-Cordeiro V, Glienke C, Galli-Terasawa LV (2014) Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express 4:26

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Viji R, Prasanna PR (2012) Assessment of water holding capacity of major soil series of Lalgudi, Trichy, India. J Environ Res Dev 7(1A):393–398

    Google Scholar 

  • Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) (2009) Bergey’s manual of systematic bacteriology, vol 3. Springer-Verlag, New York

    Google Scholar 

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R, Saxena AK (2015) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629. doi:10.1007/s13213-014-0897-9

    Article  Google Scholar 

  • Yao H, He ZL, Wilson M, Campbell CD (2000) Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb Ecol 40(3):223–237

    CAS  Google Scholar 

  • Zahir A, Abbas SA, Khalid M, Arshad M (2000) Structure dependent microbially derived plant hormones by improving growth of maize seedlings. Pak J Biol Sci 3:289–291

    Article  Google Scholar 

  • Zhalnina K, Dias R, de Quadros PD, Davis-Richardson A, Camargo FAO, Clark IM, McGrath SP, Hirsch PR, Triplett EW (2015) Soil pH determines microbial diversity and composition in the park grass experiment. Microb Ecol 69(2):395–406

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Vice-Chancellor of Assam Agricultural University, Dr. K. M. Bujarbaruah for his idea and encouragement to take up the project. The authors thank Dr. B. K. Sarmah, Director, DBT-AAU Centre, AAU, Jorhat and Dr. M. K. Modi, Head, Department of Agricultural Biotechnology, AAU, Jorhat for providing the necessary facilities to carry out the research work. The help received from Mr. Debashis Panda, Research Scholar, Distributed Information Centre, AAU, in statistical analysis is also duly acknowledged. This project was supported by Grant received from DBT-AAU Centre, Assam Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhumita Barooah.

Ethics declarations

Conflict of interest

The authors have no conflicts of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 718 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, G., Deka, P., Das, P. et al. Diversity and functional properties of acid-tolerant bacteria isolated from tea plantation soil of Assam. 3 Biotech 7, 229 (2017). https://doi.org/10.1007/s13205-017-0864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0864-9

Keywords

Navigation