Skip to main content
Log in

Bacterial exopolysaccharide promotes acid tolerance in Bacillus amyloliquefaciens and improves soil aggregation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In this paper we report the isolation and taxonomic characterization of exopolysaccharide (EPS) producing bacteria followed by the role of EPS in conferring acid tolerance to the soil bacteria Bacillus amyloliquefaciens p16. The role of EPS in promoting soil aggregation is also presented. A total of 75 isolates were tested for acid tolerance and biofilm production under acid stress of which, 54 isolates were further tested for EPS production. Out of the 54 isolates, 28 isolates produced EPS in the range of (67.88 and 219.96 µg/ml) with B. amyloliquefaciens p16 showing the highest production. The 28 isolates characterized for phenotypic and molecular traits mostly belonged to the members of the genera Bacillus, Brevibacillus, Brevibacterium, Paenibacillus, Serretia, Pseudomonas, Arthrobacter and Lysinibacillus. The monosaccharide components of the EPS produced by B. amyloliquefaciens p16 shifted from galactose to arabinose under acid stress as revealed through HPLC analysis. Inactivation of the epsB gene encoding putative bacterial protein tyrosine kinase (BY-kinases) in B. amyloliquefaciens p16 resulted in significantly less EPS (33.23 µg/ml) production compared to wild-type (WT) (223.87 µg/ml). The mutant (B. amyloliquefaciens 6A5) was barely able to survive in pH 4.5 unlike that of the WT. Further, inoculation of the WT and mutant B. amyloliquefaciens 6A5 in the soil resulted in formation of small sized soil aggregates (42.41 mm) with less water holding capacity (27.67%) as compared to the soil treated with WT that produced larger soil aggregates of size 80.59 mm with higher 53.90% water holding capacity. This study indicates that EPS produced by acid-tolerant B. amyloliquefaciens p16 can not only impart acid tolerance to the bacteria but also aids in promoting soil aggregation when applied to the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Boor KJ (2006) Bacterial stress responses: what doesn’t kill them can make them stronger. PLoS Biol 4:e23. https://doi.org/10.1371/journal.pbio.0040023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tabitha T, Brown RT, Koenig DR, Huggins et al (2007) Lime effects on soil acidity, crop yield, and aluminum chemistry in direct-seeded cropping systems. Soil Sci Soc Am J 72:634–640. https://doi.org/10.2136/sssaj2007.0061

    Article  CAS  Google Scholar 

  3. Goswami G, Deka P, Das P et al (2017) Diversity and functional properties of acid-tolerant bacteria isolated from tea plantation soil of Assam. 3 Biotech 7:229. https://doi.org/10.1007/s13205-017-0864-9

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu Y, Tang H, Lin Z, Xu P (2015) Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv 33:1484–1492. https://doi.org/10.1016/j.biotechadv.2015.06.001

    Article  CAS  PubMed  Google Scholar 

  5. Dilworth MJ, Rynne FG, Castelli JM et al (1999) Survival and exopolysaccharide production in Sinorhizobium meliloti WSM419 are affected by calcium and low pH. Microbiology 145:1585–1593. https://doi.org/10.1099/13500872-145-7-1585

    Article  CAS  PubMed  Google Scholar 

  6. Kubota H, Senda S, Nomura N et al (2008) Biofilm formation by lactic acid bacteria and resistance to environmental stress. J Biosci Bioeng 106:381–386. https://doi.org/10.1263/jbb.106.381

    Article  CAS  PubMed  Google Scholar 

  7. Stoodley P, Cargo R, Rupp CJ et al (2002) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29:361–367. https://doi.org/10.1038/sj.jim.7000282

    Article  CAS  PubMed  Google Scholar 

  8. Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015. https://doi.org/10.3390/ijms131114002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lynch JM, Bragg E (1985) Microorganisms and soil aggregate stability. Springer, New York, pp 133–171

    Google Scholar 

  12. Kumar Singha T (2012) Microbial extracellular polymeric substances: production, isolation and applications. IOSR J Pharm 2:276–281. https://doi.org/10.9790/3013-0220276281

    Article  Google Scholar 

  13. Boone DR, Brenner DJ, Castenholz RW et al (2001) Bergey’s manual of systematic bacteriology. Springer, New York

    Book  Google Scholar 

  14. El-Newary SA, Ibrahim AY, Asker MS et al (2017) Production, characterization and biological activities of acidic exopolysaccharide from marine Bacillus amyloliquefaciens 3MS 2017. Asian Pac J Trop Med 10:652–662. https://doi.org/10.1016/j.apjtm.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  15. O’Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp. https://doi.org/10.3791/2437

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bose S, Khodke M, Basak S, Mallick SK (2009) Detection of biofilm producing Staphylococci: need of the hour. J Clin Diagnostic Res 3:1915–1920

    Google Scholar 

  17. Kim JU, Kim Y, Han KS et al (2006) Function of cell-bound and released exopolysaccharides produced by Lactobacillus rhamnosus ATCC 9595. J Microbiol Biotechnol 16:939–945

    CAS  Google Scholar 

  18. DuBois M, Gilles KA, Hamilton JK, Rebers PA and FS (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  19. Brenner DJ, Staley JT, Krieg NR (2001) Classification of procaryotic organisms and the concept of bacterial speciation. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual® systematic bacteriology. Springer, New York, pp 27–31

    Chapter  Google Scholar 

  20. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dubois M, Gilles KAHJPP, SF (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  22. Karuppiah P, Venkatasam V, Ramasamy T (2014) Isolation and characterization of exopolysaccharide producing bacteria from Pak Bay (Mandapam). Int J Oceanogr Mar Ecol Syst 3:1–8. https://doi.org/10.3923/ijomes.2014.1.8

    Article  Google Scholar 

  23. Galisa PS, da Silva HAP, Macedo AVM et al (2012) Identification and validation of reference genes to study the gene expression in Gluconacetobacter diazotrophicus grown in different carbon sources using RT-qPCR. J Microbiol Methods 91:1–7. https://doi.org/10.1016/j.mimet.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  24. Baruah TC, Borthakur HP (1997) Text book of soil analysis. Vikas Publishing House Pvt. Ltd., New Delhi

    Google Scholar 

  25. Bray Roger H, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:3946

    Google Scholar 

  26. Casida LE, Klein DA, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371–376

    Article  CAS  Google Scholar 

  27. Pang PCK, Kolenko H (1986) Phosphomonoesterase activity in forest soils. Soil Biol Biochem 18:35–39. https://doi.org/10.1016/0038-0717(86)90100-8

    Article  CAS  Google Scholar 

  28. Green VS, Stott DE, Diack M (2005) Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biol Biochem. https://doi.org/10.1016/j.soilbio.2005.06.020

    Article  Google Scholar 

  29. Gambino M, Cappitelli F (2016) Mini-review: biofilm responses to oxidative stress. Biofouling 32:167–178. https://doi.org/10.1080/08927014.2015.1134515

    Article  CAS  PubMed  Google Scholar 

  30. Clarridge JE III (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17:840–862. https://doi.org/10.1128/CMR.17.4.840-862.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ehrhardt CJ, Chu V, Brown T et al (2010) Use of fatty acid methyl ester profiles for discrimination of Bacillus cereus T-strain spores grown on different media. Appl Environ Microbiol 76:1902–1912. https://doi.org/10.1128/AEM.02443-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pandey A, Palni LMS (1997) Bacillus species: the dominant bacteria of the rhizosphere of established tea bushes. Microbiol Res 152:359–365. https://doi.org/10.1016/S0944-5013(97)80052-3

    Article  CAS  PubMed  Google Scholar 

  33. El-Dein MMN, El-Fallal AA, EL-Shahat AT, Faten EH (2004) Exopolysaccharides production by Pleurotus pulmonarius: factors affecting formation and their structures. Pak J Biol Sci 7:1078–1084. https://doi.org/10.3923/pjbs.2004.1078.1084

    Article  Google Scholar 

  34. Sutherland IW (1972) Bacterial exopolysaccharides. Adv Microb Physiol 8:143–213

    Article  CAS  PubMed  Google Scholar 

  35. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9. https://doi.org/10.1099/00221287-147-1-3

    Article  CAS  PubMed  Google Scholar 

  36. Kimmel SA, Roberts RF, Ziegler GR (1998) Optimization of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus RR grown in a semidefined medium. Appl Environ Microbiol 64:659–664

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Elsholz AKW, Wacker SA, Losick R (2014) Self-regulation of exopolysaccharide production in Bacillus subtilis by a tyrosine kinase. Genes Dev 28:1710–1720. https://doi.org/10.1101/gad.246397.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cerning J (1995) Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Lait 75:463–472

    Article  CAS  Google Scholar 

  39. Cerning J, Bouillanne C, Landon M, Desmazeaud M (1992) Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria. J Dairy Sci 75:692–699. https://doi.org/10.3168/jds.S0022-0302(92)77805-9

    Article  CAS  Google Scholar 

  40. Razack SA, Velayutham V, Thangavelu V (2013) Medium optimization for the production of exopolysaccharide by Bacillus subtilis using synthetic sources and agro wastes. Turk J Biol 37:280–288. https://doi.org/10.3906/biy-1206-50

    Article  CAS  Google Scholar 

  41. Arfarita N, Hidayati N, Rosyidah A et al (2016) Exploration of indigenous soil bacteria producing-exopolysaccharides for stabilizing of aggregates land potential as biofertilizer. J Degrad Min Lands Manag 4:697–702. https://doi.org/10.15243/jdmlm.2016.041.697

    Article  Google Scholar 

  42. Galle S, Arendt EK (2014) Exopolysaccharides from sourdough lactic acid bacteria. Crit Rev Food Sci Nutr 54:891–901. https://doi.org/10.1080/10408398.2011.617474

    Article  CAS  PubMed  Google Scholar 

  43. Grobben GJ, Sikkema J, Smith MR, de Bont JAM (1995) Production of extracellular polysaccharides by Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772 grown in a chemically defined medium. J Appl Bacteriol 79:103–107. https://doi.org/10.1111/j.1365-2672.1995.tb03130.x

    Article  CAS  Google Scholar 

  44. Pham PL, Dupont I, Roy D et al (2000) Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. Appl Environ Microbiol 66:2302–2310. https://doi.org/10.1128/AEM.66.6.2302-2310.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tease B, Jürgens UJ, Golecki JR et al (1991) Fine-structural and chemical analyses on inner and outer sheath of the cyanobacterium Gloeothece sp. PCC 6909. Antonie Van Leeuwenhoek 59:27–34. https://doi.org/10.1007/BF00582116

    Article  CAS  PubMed  Google Scholar 

  46. Koo H, Falsetta ML, Klein MI (2013) The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res 92:1065–1073. https://doi.org/10.1177/0022034513504218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ozturk S, Aslim B (2010) Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress. Environ Sci Pollut Res 17:595–602. https://doi.org/10.1007/s11356-009-0233-2

    Article  CAS  Google Scholar 

  48. Kumar S, Chaudhuri S, Maiti SK (2013) Soil Dehydrogenase enzyme activity in natural and mine soil-a review. Middle-East J Sci Res 13:898–906. https://doi.org/10.5829/idosi.mejsr.2013.13.7.2801

    Article  CAS  Google Scholar 

  49. Lundgren B (1981) Fluorescein diacetate as a stain of metabolically active bacteria in soil. Oikos 36:17. https://doi.org/10.2307/3544373

    Article  Google Scholar 

  50. Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11:1034–1043. https://doi.org/10.1111/j.1462-5822.2009.01323.x

    Article  CAS  PubMed  Google Scholar 

  51. Dertli E, Colquhoun IJ, Gunning AP et al (2013) Structure and biosynthesis of two exopolysaccharides produced by Lactobacillus johnsonii FI9785. J Biol Chem 288:31938–31951. https://doi.org/10.1074/jbc.M113.507418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grangeasse C, Cozzone A, Deutscher J, Mijakovic I (2007) Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends Biochem Sci 32:86–94. https://doi.org/10.1016/j.tibs.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  53. Chaudhari PR, Ahire DV, Ahire VD et al (2013) Soil bulk density as related to soil texture, organic matter content and available total nutrients of coimbatore soil. Int J Sci Res Publ 3:1–8

    Google Scholar 

  54. Chenu C, Pons CHRM (1985) Interaction of kaolinite and montmorillonite with neutral polysaccharides. In: Shultz LG, van Olphen H, Mumpton FA (eds) Proceedings of the international clay conference. The Clay Minerals Society, Bloomington, p 37

    Google Scholar 

  55. Lynch JM (1981) Promotion and inhibition of soil aggregate stabilization by micro-organisms. Microbiology 126:371–375. https://doi.org/10.1099/00221287-126-2-371

    Article  Google Scholar 

  56. Ashraf M, Hasnain S, Hussain F (2005) Exo-polysaccharides (EPS) producing biofilm bacteria in improving physico-chemical characteristics of the salt-affected soils. In: Raja IA et al (eds) Proceedings of international conference environment and sustainable development. COMSATS Institute of Information Technology, Abbottabad, pp 1527–1536

    Google Scholar 

  57. Degens BP (1997) Macro-aggregation of soils by biological bonding and binding mechanisms and the factors affecting these: a review. Aust J Soil Res 35:431. https://doi.org/10.1071/S96016

    Article  Google Scholar 

  58. Dick RP (1997) Soil enzyme activities as integrative indicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, New York, pp 121–156

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Department of Biotechnology (DBT), Govt. of India, for financial assistance for the Project, “Screening of soil microbes for acid tolerance gene” under DBT-AAU Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, India. The authors are grateful to Dr. M. K. Modi, Head, Department of Agricultural Biotechnology and Dr. B. K. Sarmah, Director DBT-AAU Centre, AAU, Jorhat for providing the necessary facilities. The authors also wish to thank Dr. Deniel R. Zeigler, Director, Bacillus Genetic Stock Centre, USA for providing the pMUTIN4 vector as a generous gift.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhumita Barooah.

Ethics declarations

Conflict of interest

The authors have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deka, P., Goswami, G., Das, P. et al. Bacterial exopolysaccharide promotes acid tolerance in Bacillus amyloliquefaciens and improves soil aggregation. Mol Biol Rep 46, 1079–1091 (2019). https://doi.org/10.1007/s11033-018-4566-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4566-0

Keywords

Navigation