Skip to main content
Log in

Distinct Promoters Affect Pyrroloquinoline Quinone Production in Recombinant Escherichia coli and Klebsiella pneumoniae

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Pyrroloquinoline quinone (PQQ) is a versatile quinone cofactor participating in numerous biological processes. Klebsiella pneumoniae can naturally synthesize PQQ for harboring intact PQQ synthesis genes. Previous metabolic engineering of K. pneumoniae failed to overproduce PQQ due to the employment of strong promoter in expression vector. Here we report that a moderate rather than strong promoter is efficient for PQQ production. To screen an appropriate promoter, a total of four distinct promoters—lac promoter, pk promoter of glycerol dehydratase gene (dhaB1), promoter of kanamycin resistance gene, and T7 promoter (as the control)—were individually used for overexpressing the endogenous PQQ genes in K. pneumoniae along with heterologous expression in Escherichia coli. We found that all recombinant K. pneumoniae strains produced more PQQ than recombinant E. coli strains that carried corresponding vectors, indicating that K. pneumoniae is superior to E. coli for the production of PQQ. Particularly, the recombinant K. pneumoniae recruiting the promoter of kanamycin resistance gene produced the highest PQQ (1,700 nmol), revealing that a moderate rather than strong promoter is efficient for PQQ production. Furthermore, PQQ production was roughly proportional to glucose concentration increasing from 0.5 to 1.5 g/L, implying the synergism between PQQ biosynthesis and glucose utilization. This study not only provides a feasible strategy for production of PQQ in K. pneumoniae, but also reveals the exquisite synchronization among PQQ biosynthesis, glucose metabolism, and cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andreeva IG, Golubeva LI, Kuvaeva TM et al (2011) Identification of Pantoea ananatis gene encoding membrane pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase and pqqABCDEF operon essential for PQQ biosynthesis. FEMS Microbiol Lett 318(1):55–60

    Article  CAS  PubMed  Google Scholar 

  2. Choi O, Kim J, Kim JG et al (2008) Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol 146(2):657–668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Choi SY, Khemlani LS, Churchich JE (1992) Brain glutamate decarboxylase and pyrroloquinoline quinone. BioFactors 3(3):191–196

    CAS  PubMed  Google Scholar 

  4. Elias MD, Nakamura S, Migita CT et al (2004) Occurrence of a bound ubiquinone and its function in Escherichia coli membrane-bound quinoprotein glucose dehydrogenase. J Biol Chem 279:3078–3083

    Article  CAS  PubMed  Google Scholar 

  5. Felder M, Gupta A, Verma V et al (2000) The pyrroloquinoline quinone synthesis genes of Gluconobacter oxydans. FEMS Microbiol Lett 193(2):231–236

    Article  CAS  PubMed  Google Scholar 

  6. Goosen N, Huinen RG, van de Putte P (1992) A 24-amino-acid polypeptide is essential for the biosynthesis of the coenzyme pyrrolo-quinoline-quinone. J Bacteriol 174(4):1426–1427

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Holscher T, Gorisch H (2006) Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. J Bacteriol 188(21):7668–7676

    Article  PubMed Central  PubMed  Google Scholar 

  8. Kasahara T, Kato T (2003) Nutritional biochemistry: a new redox-cofactor vitamin for mammals. Nature 422:832

    Article  CAS  PubMed  Google Scholar 

  9. Killgore J, Smidt C, Duich L et al (1989) Nutritional importance of pyrroloquinoline quinone. Science 245(4920):850–852

    Article  CAS  PubMed  Google Scholar 

  10. Kim CH, Han SH, Kim KY et al (2003) Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium. Curr Microbiol 47(6):457–461

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Su MY, Ge XZ et al (2013) Enhanced aldehyde dehydrogenase activity by regenerating NAD+ in Klebsiella pneumoniae and implications for the glycerol dissimilation pathways. Biotechnol Lett 35(10):1609–1615

    Article  CAS  PubMed  Google Scholar 

  12. Magnusson OT, Toyama H, Saeki M et al (2004) Quinone biogenesis: structure and mechanism of PqqC, the final catalyst in the production of pyrroloquinoline quinone. Proc Natl Acad Sci USA 101(21):7913–7918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Matsushita K, Arents JC, Bader R et al (1997) Escherichia coli is unable to produce pyrroloquinoline quinone (PQQ). Microbiology 143:3149–3156

    Article  CAS  PubMed  Google Scholar 

  14. Meulenberg JJ, Sellink E, Riegman NH et al (1992) Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon. Mol Gen Genet 232(2):284–294

    CAS  PubMed  Google Scholar 

  15. Miyazaki T, Sugisawa T, Hoshino T (2006) Pyrroloquinoline quinone-dependent dehydrogenases from Ketogulonicigenium vulgare catalyze the direct conversion of L-sorbosone to L-ascorbic acid. Appl Envir Microbiol 72(2):1487–1495

    Article  CAS  Google Scholar 

  16. Morris CJ, Biville F, Turlin E et al (1994) Isolation, phenotypic characterization, and complementation analysis of mutants of Methylobacterium extorquens AM1 unable to synthesize pyrroloquinoline quinone and sequences of pqqD, pqqG, and pqqC. J Bacteriol 176(6):1746–1755

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Petrov K, Petrova P (2009) High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl Microbiol Biotechnol 84(4):659–665

    Article  CAS  PubMed  Google Scholar 

  18. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  19. Shen YQ, Bonnot F, Imsand EM et al (2012) Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone. Biochemistry 51(11):2265–2275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Velterop JS, Sellink E, Meulenberg JJ et al (1995) Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. J Bacteriol 177(17):5088–5098

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Wang X, Sa N, Wang FH et al (2013) Engineered constitutive pathway in Klebsiella pneumoniae for 3-hydroxypropionic acid production and implications for decoupling glycerol dissimilation pathways. Curr Microbiol 66(3):293–299

    Article  CAS  PubMed  Google Scholar 

  22. Wettstein C, Mohwald H, Lisdat F (2012) Coupling of pyrroloquinoline quinone dependent glucose dehydrogenase to (cytochrome c/DNA)-multilayer systems on electrodes. Bioelectrochemistry 88:97–102

    Article  CAS  PubMed  Google Scholar 

  23. Xiong XH, Zhao Y, Ge X et al (2011) Production and radioprotective effects of pyrroloquinoline quinone. Int J Mol Sci 12(12):8913–8923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 21076013, 21276014) and National Basic Research Program of China (973 Program) (2012CB725200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingfang Tian.

Additional information

Jiguo Sun and Zengye Han contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Han, Z., Ge, X. et al. Distinct Promoters Affect Pyrroloquinoline Quinone Production in Recombinant Escherichia coli and Klebsiella pneumoniae . Curr Microbiol 69, 451–456 (2014). https://doi.org/10.1007/s00284-014-0607-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0607-7

Keywords

Navigation