Skip to main content
Log in

Improved Production of Pyrroloquinoline Quinone by Simultaneous Augmentation of Its Synthesis Gene Expression and Glucose Metabolism in Klebsiella pneumoniae

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Klebsiella pneumoniae can naturally synthesize pyrroloquinoline quinone (PQQ), but current low yield restricts its commercialization. Here, we reported that PQQ production can be improved by simultaneously intensifying PQQ gene expression and glucose metabolism. Firstly, tandem repetitive tac promoters were constructed to overexpress PQQ synthesis genes. Results showed that when three repeats of tac promoter were recruited to overexpress PQQ synthesis genes, the recombinant strain generated 1.5-fold PQQ relative to the strain recruiting only one tac promoter. Quantitative real-time PCR (qRT-PCR) revealed the increased transcription levels of PQQ synthesis genes. Next, fermentation parameters were optimized to augment the glucose direct oxidation pathway (GDOP) mediated by PQQ-dependent glucose dehydrogenase (PQQ-GDH). Results demonstrated that the cultivation conditions of sufficient glucose (≥ 32 g/L), low pH (5.8), and limited potassium (0.7 nmol/L) significantly promoted the biosynthesis of gluconic acid, 2-ketogluconic acid, and PQQ. In optimum shake flask fermentation conditions, the K. pneumoniae strain overexpressing PQQ synthesis genes under three repeats of tac promoter generated 363.3 nmol/L of PQQ, which was 2.6-fold of that in original culture conditions. In bioreactor cultivation, this strain produced 2371.7 nmol/L of PQQ. To our knowledge, this is the highest PQQ titer reported so far using K. pneumoniae as a host strain. Overall, simultaneous intensification of pqq gene expression and glucose metabolism is effective to improve PQQ production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu T, Yang X, Wu C, Qiu J, Fang Q, Wang L, Yu S, Sun H (2018) Pyrroloquinoline quinone attenuates cachexia-induced muscle atrophy via suppression of reactive oxygen species. J Thorac Dis 10(5):2752–2759. https://doi.org/10.21037/jtd.2018.04.112

    Article  PubMed  PubMed Central  Google Scholar 

  2. Saihara K, Kamikubo R, Ikemoto K, Uchida K, Akagawa M (2017) Pyrroloquinoline quinone, a redox-active o-quinone, stimulates mitochondrial biogenesis by activating the SIRT1/PGC-1α signaling pathway. Biochemistry 56(50):6615–6625. https://doi.org/10.1021/acs.biochem.7b01185

    Article  CAS  PubMed  Google Scholar 

  3. Lu J, Chen S, Shen M, He Q, Zhang Y, Shi Y, Ding F, Zhang Q (2018) Mitochondrial regulation by pyrroloquinoline quinone prevents rotenone-induced neurotoxicity in Parkinson's disease models. Neurosci Lett 687:104–110. https://doi.org/10.1016/j.neulet.2018.09.031

    Article  CAS  PubMed  Google Scholar 

  4. Wu R, Pan J, Shen M, Xing C (2018) Apoptotic effect of pyrroloquinoline quinone on chondrosarcoma cells through activation of the mitochondrial caspase-dependent and caspaseindependent pathways. Oncol Rep 40(3):1614–1620. https://doi.org/10.3892/or.2018.6569

    Article  CAS  PubMed  Google Scholar 

  5. Si Z, Zhu J, Wang W, Huang L, Wei P, Cai J, Xu Z (2016) Novel and efficient screening of PQQ high-yielding strains and subsequent cultivation optimization. Appl Microbiol Biotechnol 100(24):1–10. https://doi.org/10.1007/s00253-016-7739-6

    Article  CAS  Google Scholar 

  6. Velterop JS, Sellink E, Meulenberg JJ, David S, Bulder I, Postma PW (1995) Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. J Bacteriol 177(17):5088–5098

    Article  CAS  Google Scholar 

  7. Sun J, Han Z, Ge X, Tian P (2014) Distinct promoters affect pyrroloquinoline quinone production in recombinant Escherichia coli and Klebsiella pneumoniae. Curr Microbiol 69(4):451–456. https://doi.org/10.1007/s00284-014-0607-7

    Article  CAS  PubMed  Google Scholar 

  8. Urakami T, Yashima K, Kobayashi H, Yoshida A, Ito-Yoshida C (1992) Production of pyrroloquinoline quinone by using methanol-utilizing bacteria. Appl Environ Microbiol 58(12):3970–3976

    Article  CAS  Google Scholar 

  9. Xiong XH, Zhao Y, Ge X, Yuan SJ, Wang JH, Zhi JJ, Yang YX, Du BH, Guo WJ, Wang SS (2011) Production and radioprotective effects of pyrroloquinoline quinone. Int J Mol Sci 12(12):8913–8923. https://doi.org/10.3390/ijms12128913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wei P, Si Z, Lu Y, Yu Q, Huang L, Xu Z (2017) Medium optimization for pyrroloquinoline quinone (PQQ) production by Methylobacillus sp. zju323 using response surface methodology and artificial neural network-genetic algorithm. Prep Biochem Biotechnol 47(7):709–719. https://doi.org/10.1080/10826068.2017.1315596

    Article  CAS  PubMed  Google Scholar 

  11. Latham JA, Iavarone AT, Barr I, Juthani PV, Klinman JP (2015) PqqD is a novel peptide chaperone that forms a ternary complex with the radical S-adenosylmethionine protein PqqE in the pyrroloquinoline quinone biosynthetic pathway. J Biol Chem 290(20):12908–12918. https://doi.org/10.1074/jbc.M115.646521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barr I, Latham JA, Iavarone AT, Chantarojsiri T, Hwang JD, Klinman JP (2016) Demonstration that the radical S-adenosylmethionine (SAM) enzyme PqqE catalyzes de novo carbon-carbon cross-linking within a peptide substrate PqqA in the presence of the peptide chaperone PqqD. J Biol Chem 291(17):8877–8884. https://doi.org/10.1074/jbc.C115.699918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Puehringer S, Metlitzky M, Schwarzenbacher R (2008) The pyrroloquinoline quinone biosynthesis pathway revisited: a structural approach. BMC Biochem 9:8–18. https://doi.org/10.1186/1471-2091-9-8

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kumar V, Park S (2017) Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source. Biotechnol Adv 36(1):150–167. https://doi.org/10.1016/j.biotechadv.2017.10.004

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Wang X, Ge X, Tian P (2016) High production of 3-hydroxypropionic acid in Klebsiella pneumoniae by systematic optimization of glycerol metabolism. Sci Rep 6:26932. https://doi.org/10.1038/srep26932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meulenberg JJ, Sellink E, Riegman NH, Postma PW (1992) Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon. Mol Gen Genet 232(2):284–294

    Article  CAS  Google Scholar 

  17. Meulenberg JJ, Sellink E, Loenen WA, Riegman NH, Van KM, Postma PW (1990) Cloning of Klebsiella pneumoniae pqq genes and PQQ biosynthesis in Escherichia coli. FEMS Microbiol Lett 59(3):337–343. https://doi.org/10.1016/0378-1097(90)90244-k

    Article  CAS  PubMed  Google Scholar 

  18. Wehmeier UF, Wohrl BM, Lengeler JW (1995) Molecular analysis of the phosphoenolpyruvate-dependent l-sorbose: phosphotransferase system from Klebsiella pneumoniae and of its multidomain structure. Mol Gen Genet 246(5):610–618

    Article  CAS  Google Scholar 

  19. Dong W, Xu J, Sun J, Shi J, Jian H (2013) 2-Ketogluconic acid production by Klebsiella pneumoniae CGMCC 16366. J Ind Microbiol Biotechnol 40(6):561–570. https://doi.org/10.1007/s10295-013-1261-y

    Article  CAS  Google Scholar 

  20. Hommes RW, Postma PW, Tempest DW, Neijssel OM (1989) The influence of the culture pH value on the direct glucose oxidative pathway in Klebsiella pneumoniae NCTC 418. Arch Microbiol 151(3):261–267

    Article  CAS  Google Scholar 

  21. Geiger O, Gorisch H (1987) Enzymatic determination of pyrroloquinoline quinone using crude membranes from Escherichia coli. Anal Biochem 164(2):418–423

    Article  CAS  Google Scholar 

  22. Si Z, Machaku D, Wei P, Huang L, Cai J, Xu Z (2017) Enhanced fed-batch production of pyrroloquinoline quinine in Methylobacillus sp CCTCC M2016079 with a two-stage pH control strategy. Appl Microbiol Biotechnol 101(12):4915–4922. https://doi.org/10.1007/s00253-017-8259-8

    Article  CAS  PubMed  Google Scholar 

  23. Neijssel OM, Tempest DW, Postma PW, Duine JA, Jzn JF (1983) Glucose metabolism by K+-limited Klebsiella aerogenes: Evidence for the involvement of a quinoprotein glucose dehydrogenase. FEMS Microbiol Lett 20(1):35–39. https://doi.org/10.1111/j.1574-6968.1983.tb00085.x

    Article  CAS  Google Scholar 

  24. Kojima K, Witarto AB, Sode K (2000) The production of soluble pyrroloquinoline quinone glucose dehydrogenase by Klebsiella pneumoniae, the alternative host of PQQ enzymes. Biotechnol Lett 22(16):1343–1347. https://doi.org/10.1023/a:1005615400089

    Article  CAS  Google Scholar 

  25. Jiang X, Zhu C, Lin J, Li J, Fu S, Gong H (2016) Vector promoters used in Klebsiella pneumoniae. Biotechnol Appl Biochem 63(5):734–739. https://doi.org/10.1002/bab.1423

    Article  CAS  PubMed  Google Scholar 

  26. Evans RL III, Latham JA, Xia Y, Klinman JP, Wilmot CM (2017) Nuclear magnetic resonance structure and binding studies of PqqD, a chaperone required in the biosynthesis of the bacterial dehydrogenase cofactor pyrroloquinoline quinone. Biochemistry 56(21):2735–2746. https://doi.org/10.1021/acs.biochem.7b00247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu W, Martins AM, Klinman JP (2018) Methods for expression, purification, and characterization of PqqE, a radical SAM enzyme in the PQQ biosynthetic pathway. Methods Enzymol 606:389–420. https://doi.org/10.1016/bs.mie.2018.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hommes RW, Van HB, Postma PW, Neijssel OM, Tempest DW (1985) The functional significance of glucose dehydrogenase in Klebsiella aerogenes. Arch Microbiol 143(2):163–168

    Article  CAS  Google Scholar 

  29. Ali MK, Li X, Tang Q, Liu X, Chen F, Xiao J, Ali M, Chou SH, He J (2017) Regulation of inducible potassium transporter KdpFABC by the KdpD/KdpE two-component system in Mycobacterium smegmatis. Front Microbiol 8:570. https://doi.org/10.3389/fmicb.2017.00570

    Article  PubMed  PubMed Central  Google Scholar 

  30. Takeda K, Ishida T, Yoshida M, Samejima M, Ohno H, Igarashi K, Nakamura N (2019) Crystal structure of the catalytic and cytochrome b domains in a eukaryotic pyrroloquinoline quinone-dependent dehydrogenase. Appl Environ Microbiol 85(24):e01692. https://doi.org/10.1128/AEM.01692-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Turbe-Doan A, Record E, Lombard V, Kumar R, Levasseur A, Henrissat B, Garron ML (2019) Trichoderma reesei dehydrogenase, a pyrroloquinoline quinone-dependent member of auxiliary activity family 12 of the carbohydrate-active enzymes database: functional and structural characterization. Appl Environ Microbiol 85(24):e00964. https://doi.org/10.1128/AEM.00964-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matsutani M, Yakushi T (2018) Pyrroloquinoline quinone-dependent dehydrogenases of acetic acid bacteria. Appl Microbiol Biotechnol 102(22):9531–9540. https://doi.org/10.1007/s00253-018-9360-3

    Article  CAS  PubMed  Google Scholar 

  33. Krajewski V, Simic P, Mouncey NJ, Bringer S, Sahm H, Bott M (2010) Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation. Appl Environ Microbiol 76(13):4369–4376. https://doi.org/10.1128/AEM.03022-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Du J, Bai W, Song H, Yuan YJ (2013) Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-L-gulonic acid production in Ketogulonigenium vulgare-Bacillus cereus consortium. Metab Eng 19:50–56. https://doi.org/10.1016/j.ymben.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  35. Moonmangmee D, Adachi O, Shinagawa E, Toyama H, Theeragool G, Lotong N, Matsushita K (2002) L-erythrulose production by oxidative fermentation is catalyzed by PQQ-containing membrane-bound dehydrogenase. Biosci Biotechnol Biochem 66(2):307–318. https://doi.org/10.1271/bbb.66.307

    Article  CAS  PubMed  Google Scholar 

  36. Yakushi T, Terada Y, Ozaki S, Kataoka N, Akakabe Y, Adachi O, Matsutani M, Matsushita K (2018) Aldopentoses as new substrates for the membrane-bound, pyrroloquinoline quinone-dependent glycerol (polyol) dehydrogenase of Gluconobacter sp. Appl Microbiol Biotechnol 102(7):3159–3171. https://doi.org/10.1007/s00253-018-8848-1

    Article  CAS  PubMed  Google Scholar 

  37. Fontana J, Voje WE, Zalatan JG, Carothers JM (2018) Prospects for engineering dynamic CRISPR-Cas transcriptional circuits to improve bioproduction. J Ind Microbiol Biotechnol 45(7):481–490. https://doi.org/10.1007/s10295-018-2039-z

    Article  CAS  PubMed  Google Scholar 

  38. Venayak N, Anesiadis N, Cluett WR, Mahadevan R (2015) Engineering metabolism through dynamic control. Curr Opin Biotechnol 34:142–152. https://doi.org/10.1016/j.copbio.2014.12.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (2018YFA0901800), National Natural Science Foundation of China (21476011), and National High Technology Research and Development Program (863 Program) (2015AA021003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingfang Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 816 kb)

Supplementary file2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Z., Cheng, J., Zhao, P. et al. Improved Production of Pyrroloquinoline Quinone by Simultaneous Augmentation of Its Synthesis Gene Expression and Glucose Metabolism in Klebsiella pneumoniae. Curr Microbiol 77, 1174–1183 (2020). https://doi.org/10.1007/s00284-020-01918-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01918-3

Navigation