Skip to main content
Log in

Glucose Metabolism in Batch and Continuous Cultures of Gluconacetobacter diazotrophicus PAL 3

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Periplasmic glucose oxidation (by way of a pyrrolo-quinoline-quinone [PQQ]–linked glucose dehydrogenase [GDH]) was observed in continuous cultures of Gluconacetobacter diazotrophicus regardless of the carbon source (glucose or gluconate) and the nitrogen source (N2 or NH3). Its synthesis was stimulated by conditions of high energetic demand (i.e., N2-fixation) and/or C-limitation. Under C-excess conditions, PQQ-GDH synthesis increased with the glucose concentration in the culture medium. In batch cultures, PQQ-GDH was actively expressed in very early stages with higher activities under conditions of N2-fixation. Hexokinase activity was almost absent under any culture condition. Cytoplasmic nicotinamide adenine dinucleotide (NAD)–linked glucose dehydrogenase (GDH) was expressed in continuous cultures under all tested conditions, and its synthesis increased with the glucose concentration. In contrast, low activities of this enzyme were detected in batch cultures. Periplasmic oxidation, by way of PQQ-GDH, seems to be the principal pathway for metabolism of glucose in G. Diazotrophicus, and NAD-GDH is an alternative route under certain environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Adachi O, Ameyama M (1982) D-Glucose dehydrogenase from Gluconobacter suboxydans. Methods Enzymol 89:159–163

    CAS  Google Scholar 

  2. Alvarez B, Martínez-Drets G (1995) Metabolic characterization of Acetobacter diazotrophicus. Can J Microbiol 41:918–924

    CAS  Google Scholar 

  3. Attwood MM, van Dijken JP, Pronk JT (1991) Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus. J Ferment Bioeng 72:101–105

    CAS  Google Scholar 

  4. De Ley J (1966) Dehydrogenases and reductases: 2-ketogluconic acid reductase. Methods Enzymol 9:196–206

    Google Scholar 

  5. Galar ML, Boiardi JL (1995) Evidence for a membrane-bound pyrroloquinoline quinone-linked glucose dehydrogenase in Acetobacter diazotrophicus. Appl Microbiol Biotechnol 43:713–716

    CAS  Google Scholar 

  6. Hardy G (1992) Dual glucose metabolism of Pseudomonas species in chemostat culture. Doctoral thesis, Department of Microbiology, University of Amsterdam, pp 7–105

  7. Hommes RWJ, van Hell B, Postma PW, Neijssel OM, Tempest DW (1985) The functional significance of glucose dehydrogenase in Klebsiella aerogenes. Arch Microbiol 143:163–168

    Article  CAS  PubMed  Google Scholar 

  8. Lessie TG, Phibbs PV (1984) Alternative pathways of carbohydrates utilization in Pseudomonas. Ann Rev Microbiol 38:359–387

    CAS  Google Scholar 

  9. Lessie TG, Wyk JC (1972) Multiple forms of Pseudomonas multivorans glucose–6-phosphate and 6-phosphogluconate dehydrogenases: Differences in size, pyridine-nucleotide specificity and susceptibility to inhibition by adenosine-5′-triphosphate. J Bacteriol 110:1107–1117

    CAS  PubMed  Google Scholar 

  10. Luna MF, Bernardelli CE, Boiardi JL (2000) Energy generation via extracellular aldose oxidation in cultures of Acetobacter diazotrophicus fixing N2. In: Pedrosa F, Hungria M, Yates M, Newton W (eds) Current plant science and biotechnology in agriculture, vol. 38. The Netherlands: Kluwer, p. 438

    Google Scholar 

  11. Luna MF, Bernardelli CE, Boiardi JL (2002) Expression of the direct oxidative pathway in Acetobacter diazotrophicus PAL3. In: Finan TM, O’Brian MR, Layzell DB, Vessey JK, Newton W (eds) Nitrogen fixation: Global perspectives. New York, NY: CAB International, p. 482

    Google Scholar 

  12. Luna MF, Bernardelli CE, Mignone CF, Boiardi JL (2002) Energy generation by extracellular aldose oxidation in N2-fixing Gluconacetobacter diazotrophicus. Appl Environ Microbiol 68:2054–2056

    CAS  PubMed  Google Scholar 

  13. Luna MF, Mignone CF, Boiardi JL (2000) The carbon source influences the energetic efficiency of the respiratory chain of N2-fixing Acetobacter diazotrophicus. Appl Microbiol Biotechnol 54:564–569

    Article  CAS  PubMed  Google Scholar 

  14. Matsushita K, Ameyama M (1982) D-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. Methods Enzymol 89:149–155

    CAS  PubMed  Google Scholar 

  15. Matsushita K, Shinagawa E, Ameyama M (1982) D-gluconate dehydrogenase from bacteria, 2-keto-D-gluconate yielding, membrane bound. Methods Enzymol 89:187–193

    CAS  PubMed  Google Scholar 

  16. Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 15. 36:247–301

    CAS  Google Scholar 

  17. Meers J, Tempest DW, Brown CM (1970) Glutamine-(amide): 2-oxoglutarate amino transferase oxidoreductase (NADP), an enzyme involved in the synthesis of glutamate by some bacteria. J Gen Microbiol 64:187–194

    CAS  PubMed  Google Scholar 

  18. O’Brien RW, Neijssel OM, Tempest DW (1980) Glucose phosphoenolpyruvate phosphotransferase activity and glucose uptake rate of Klebsiella aerogenes growing in chemostat culture. J Gen Microbiol 116:305–314

    CAS  PubMed  Google Scholar 

  19. Olijve W, Kok JJ (1979b) Analysis of the growth of Gluconobacter oxydans in chemostat cultures. Arch Microbiol 121:291–297

    CAS  Google Scholar 

  20. Romanov VI, Hernandez-Lucas I, Martínez-Romero E (1994) Carbon metabolism enzymes of Rhizobium tropici cultures and bacteroids. Appl Environ Microbiol 60:2339–2342

    CAS  PubMed  Google Scholar 

  21. Simons JA, Teixeira de Mattos MJ, Neijssel OM (1991) Aerobic 2-ketogluconate metabolism of Klebsiella pneumoniae NCTC 418 grown in chemostat culture. J Gen Microbiol 137:1479–1483

    CAS  PubMed  Google Scholar 

  22. Stephan MP, Oliveira M, Teixeira KRS, Martínez-Drets G, Döbereiner J (1991) Physiology and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiol Lett 77:67–72

    Article  CAS  Google Scholar 

  23. Streekstra H, Teixeira De Mattos MJ, Neijssel OM, Tempest DW (1987) Overflow metabolism during anaerobic growth of Klebsiella aerogenes NCTC 418 on glycerol and dihydroxyacetone in chemostat culture. Arch Microbiol 147:268–275

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Carlos O. Gallego for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Boiardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luna, M.F., Bernardelli, C.E., Galar, M.L. et al. Glucose Metabolism in Batch and Continuous Cultures of Gluconacetobacter diazotrophicus PAL 3. Curr Microbiol 52, 163–168 (2006). https://doi.org/10.1007/s00284-005-4563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-005-4563-0

Keywords

Navigation