Skip to main content

Central Carbon Metabolism and Respiration in Gluconobacter oxydans

  • Chapter
  • First Online:
Acetic Acid Bacteria

Abstract

Gluconobacter oxydans, an α-proteobacterial species used for industrial vitamin C production, possesses a number of unusual metabolic features. Because of the absence of phosphofructokinase, succinyl-CoA synthetase, and succinate dehydrogenase, the Embden–Meyerhof–Parnas pathway (EMP) and the tricarboxylic acid (TCA) cycle are interrupted, leaving the pentose phosphate pathway (PPP) and the Entner–Doudoroff pathway (EDP) as the only complete pathways in central metabolism. Mutant and 13C-based carbon flux analysis revealed the PPP to be of prime importance for the cytoplasmic catabolism of sugars and derivatives. Pyruvate is partially converted to the end product acetate by pyruvate decarboxylase and acetaldehyde dehydrogenase. The respiratory chain involves two terminal ubiquinol oxidases, cytochrome bo 3 and a cyanide-insensitive bd-type oxidase CIO. Mutant studies disclosed the paramount role of cytochrome bo 3 for growth. In addition, a cytochrome bc 1 complex and cytochrome c are present, but presumably no functional cytochrome c oxidase. A mutant lacking cytochrome bc 1 showed a growth defect at acidic pH; nevertheless, the precise role of this complex remains to be clarified. Here we present an overview on recent studies concerned with central carbon metabolism and respiration in G. oxydans and also discuss corresponding data for species of Acetobacter and Gluconacetobacter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi O, Osada K, Matsushita K, Shinagawa E, Ameyama M (1982) Purification, crystallization and properties of 6-phospho- d-gluconate dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem 46:391–398

    CAS  Google Scholar 

  • Adachi O, Moonmangmee D, Shinagawa E, Toyama H, Yamada M, Matsushita K (2003a) New quinoproteins in oxidative fermentation. Biochim Biophys Acta 1647:10–17

    Article  CAS  PubMed  Google Scholar 

  • Adachi O, Moonmangmee D, Toyama H, Yamada M, Shinagawa E, Matsushita K (2003b) New developments in oxidative fermentation. Appl Microbiol Biotechnol 60:643–653

    Article  CAS  PubMed  Google Scholar 

  • Adler P, Frey LJ, Berger A, Bolten CJ, Hansen CE, Wittmann C (2014) The key to acetate: metabolic fluxes of acetic acid bacteria under cocoa pulp fermentation simulating conditions. Appl Environ Microbiol 80:4702–4716

    Article  PubMed  PubMed Central  Google Scholar 

  • Allenza P, Lessie TG (1982) Pseudomonas cepacia mutants blocked in the Entner-Doudoroff pathway. J Bacteriol 150:1340–1347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asai T (1968) Acetic acid bacteria: classification and biochemical activities. University of Tokyo Press, Tokyo

    Google Scholar 

  • Atack JM, Kelly DJ (2007) Structure, mechanism and physiological roles of bacterial cytochrome c peroxidases. Adv Microb Physiol 52:73–106

    Article  CAS  PubMed  Google Scholar 

  • Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M (2009) Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res 37:5768–5783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balodite E, Strazdina I, Galinina N, Mclean S, Rutkis R, Poole RK, Kalnenieks U (2014) Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase. Microbiology 160:2045–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bremus C, Bringer-Meyer S, Hermann U, Mouncey NJ, Sahm H (2008a) Biological process using a glucose-6-phosphate isomerase. Google patents EP1873248A1

    Google Scholar 

  • Bremus C, Bringer-Meyer S, Hermann U, Mouncey NJ, Sahm H (2008b) Biological process using a transaldolase. Google patents EP1873246 A1

    Google Scholar 

  • Brown GC (1992) The leaks and slips of bioenergetic membranes. FASEB J 6:2961–2965

    CAS  PubMed  Google Scholar 

  • Charoensuk K, Irie A, Lertwattanasakul N, Sootsuwan K, Thanonkeo P, Yamada M (2011) Physiological importance of cytochrome c peroxidase in ethanologenic thermotolerant Zymomonas mobilis. J Mol Microbiol Biotechnol 20:70–82

    Article  CAS  PubMed  Google Scholar 

  • De Ley J, Gillis M, Swings J (1984) The genus Gluconobacter. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 267–278

    Google Scholar 

  • Deppenmeier U, Ehrenreich A (2009) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16:69–80

    Article  CAS  PubMed  Google Scholar 

  • Deppenmeier U, Hoffmeister M, Prust C (2002) Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol 60:233–242

    Article  CAS  PubMed  Google Scholar 

  • Dibrova DV, Galperin M, Mulkidjanian A (2010) Characterization of the N-ATPase, a distinct, laterally transferred Na+-translocating form of the bacterial F-type membrane ATPase. Bioinformatics 26:1473–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrer T, Sauer U (2009) Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. J Bacteriol 191:2112–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrman LK, Wanken A, Nickerson KW, Conway T (1998) Rapid accumulation of intracellular 2-keto-3-deoxy-6-phosphogluconate in an Entner–Doudoroff aldolase mutant results in bacteriostasis. FEMS Microbiol Lett 159:261–266

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Singh VK, Qazi GN, Kumar A (2001) Gluconobacter oxydans: its biotechnological applications. J Mol Microbiol Biotechnol 3:445–456

    CAS  PubMed  Google Scholar 

  • Hanke T, Richhardt J, Polen T, Sahm H, Bringer S, Bott M (2012) Influence of oxygen limitation, absence of the cytochrome bc 1 complex and low pH on global gene expression in Gluconobacter oxydans 621H using DNA microarray technology. J Biotechnol 157:359–372

    Article  CAS  PubMed  Google Scholar 

  • Hanke T, Nöh K, Noack S, Polen T, Bringer S, Sahm H, Wiechert W, Bott M (2013) Combined fluxomics and transcriptomics analysis of glucose catabolism via a partially cyclic pentose phosphate pathway in Gluconobacter oxydans 621H. Appl Environ Microbiol 79:2336–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauge JG, King TE, Cheldelin VH (1955) Oxidation of dihydroxyacetone via the pentose cycle in Acetobacter suboxydans. J Biol Chem 214:11–26

    CAS  PubMed  Google Scholar 

  • Illeghems K, De Vuyst L, Weckx S (2013) Complete genome sequence and comparative analysis of Acetobacter pasteurianus 386B, a strain well-adapted to the cocoa bean fermentation ecosystem. BMC Genomics 14:526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson JB, White SA, Quirk PG, Venning JD (2002) The alternating site, binding change mechanism for proton translocation by transhydrogenase. Biochemistry 41:4173–4185

    Article  CAS  PubMed  Google Scholar 

  • Jasaitis A, Borisov VB, Belevich NP, Morgan JE, Konstantinov AA, Verkhovsky MI (2000) Electrogenic reactions of cytochrome bd. Biochemistry 39:13800–13809

    Article  CAS  PubMed  Google Scholar 

  • Kim SK, Stark BC, Webster DA (2005) Evidence that Na+-pumping occurs through the D-channel in Vitreoscilla cytochrome bo. Biochem Biophys Res Commun 332:332–338

    Article  CAS  PubMed  Google Scholar 

  • Kostner D, Luchterhand B, Junker A, Volland S, Daniel R, Büchs J, Liebl W, Ehrenreich A (2014) The consequence of an additional NADH dehydrogenase paralog on the growth of Gluconobacter oxydans DSM3504. Appl Microbiol Biotechnol 99(1):375–386. doi:10.1007/s00253-014-6069-9

    Article  PubMed  Google Scholar 

  • Krajewski V, Simić P, Mouncey NJ, Bringer S, Sahm H, Bott M (2010) Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation. Appl Environ Microbiol 76:4369–4376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macauley S, Mcneil B, Harvey LM (2001) The genus Gluconobacter and its applications in biotechnology. Crit Rev Biotechnol 21:1–25

    Article  CAS  PubMed  Google Scholar 

  • Mamlouk D, Gullo M (2013) Acetic acid bacteria: physiology and carbon sources oxidation. Indian J Microbiol 53:377–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita K, Nagatani Y, Shinagawa E, Adachi O, Ameyama M (1989) Effect of extracellular pH on the respiratory chain and energetics of Gluconobacter suboxydans. Agric Biol Chem 53:2895–2902

    CAS  Google Scholar 

  • Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36:247–301

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Toyama H, Yamada M, Adachi O (2002) Quinoproteins: structure, function, and biotechnological applications. Appl Microbiol Biotechnol 58:13–22

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Toyama H, Adachi O (2004) Respiratory chains in acetic acid bacteria: membrane bound periplasmic sugar and alcohol respirations. In: Respiration in Archaea and Bacteria. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 81–99

    Google Scholar 

  • Matsutani M, Fukushima K, Kayama C, Arimitsu M, Hirakawa H, Toyama H, Adachi O, Yakushi T, Matsushita K (2014) Replacement of a terminal cytochrome c oxidase by ubiquinol oxidase during the evolution of acetic acid bacteria. Biochim Biophys Acta 1837:1810–1820

    Article  CAS  PubMed  Google Scholar 

  • Miura H, Mogi T, Ano Y, Migita CT, Matsutani M, Yakushi T, Kita K, Matsushita K (2013) Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd. J Biochem (Tokyo) 153:535–545

    Article  CAS  Google Scholar 

  • Moens F, Lefeber T, De Vuyst L (2014) Oxidation of metabolites highlights the microbial interactions and role of Acetobacter pasteurianus during cocoa bean fermentation. Appl Environ Microbiol 80:1848–1857

    Article  PubMed  PubMed Central  Google Scholar 

  • Mogi T, Ano Y, Nakatsuka T, Toyama H, Muroi A, Miyoshi H, Migita CT, Ui H, Shiomi K, Omura S, Kita K, Matsushita K (2009) Biochemical and spectroscopic properties of cyanide-insensitive quinol oxidase from Gluconobacter oxydans. J Biochem (Tokyo) 146:263–271

    Article  CAS  Google Scholar 

  • Nishikura-Imamura S, Matsutani M, Insomphun C, Vangnai AS, Toyama H, Yakushi T, Abe T, Adachi O, Matsushita K (2014) Overexpression of a type II 3-dehydroquinate dehydratase enhances the biotransformation of quinate to 3-dehydroshikimate in Gluconobacter oxydans. Appl Microbiol Biotechnol 98:2955–2963

    Article  CAS  PubMed  Google Scholar 

  • Olijve W, Kok JJ (1979a) Analysis of growth of Gluconobacter oxydans in glucose containing media. Arch Microbiol 121:283–290

    Article  CAS  Google Scholar 

  • Olijve W, Kok JJ (1979b) An analysis of the growth of Gluconobacter oxydans in chemostat cultures. Arch Microbiol 121:291–297

    Article  CAS  Google Scholar 

  • Pappenberger G, Hohmann HP (2014) Industrial production of l-ascorbic acid (vitamin C) and d-isoascorbic acid. Adv Biochem Eng Biotechnol 143:143–188

    CAS  PubMed  Google Scholar 

  • Park C, Moon JY, Cokic P, Webster DA (1996) Na+-translocating cytochrome bo terminal oxidase from Vitreoscilla: some parameters of its Na+ pumping and orientation in synthetic vesicles. Biochemistry 35:11895–11900

    Article  CAS  PubMed  Google Scholar 

  • Peters B, Junker A, Brauer K, Mühlthaler B, Kostner D, Mientus M, Liebl W, Ehrenreich A (2013) Deletion of pyruvate decarboxylase by a new method for efficient markerless gene deletions in Gluconobacter oxydans. Appl Microbiol Biotechnol 97:2521–2530

    Article  CAS  PubMed  Google Scholar 

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  CAS  PubMed  Google Scholar 

  • Puustinen A, Finel M, Virkki M, Wikström M (1989) Cytochrome o (bo) is a proton pump in Paracoccus denitrificans and Escherichia coli. FEBS Lett 249:163–167

    Article  CAS  PubMed  Google Scholar 

  • Puustinen A, Finel M, Haltia T, Gennis RB, Wikström M (1991) Properties of the two terminal oxidases of Escherichia coli. Biochemistry 30:3936–3942

    Article  CAS  PubMed  Google Scholar 

  • Raspor PP, Goranovič D (2008) Biotechnological applications of acetic acid bacteria. Crit Rev Biotechnol 28:101–124

    Article  CAS  PubMed  Google Scholar 

  • Rauch B, Pahlke J, Schweiger P, Deppenmeier U (2010) Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans. Appl Microbiol Biotechnol 88:711–718

    Article  CAS  PubMed  Google Scholar 

  • Richhardt J, Bringer S, Bott M (2012) Mutational analysis of the pentose phosphate and Entner–Doudoroff pathways in Gluconobacter oxydans reveals improved growth of a Δedd Δeda mutant on mannitol. Appl Environ Microbiol 78:6975–6986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richhardt J, Bringer S, Bott M (2013a) Role of the pentose phosphate pathway and the Entner–Doudoroff pathway in glucose metabolism of Gluconobacter oxydans 621H. Appl Microbiol Biotechnol 97:4315–4323

    Article  CAS  PubMed  Google Scholar 

  • Richhardt J, Luchterhand B, Bringer S, Büchs J, Bott M (2013b) Evidence for a key role of cytochrome bo 3 oxidase in respiratory energy metabolism of Gluconobacter oxydans. J Bacteriol 195:4210–4220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saichana N, Matsushita K, Adachi O, Frebort I, Frebortova J (2015) Acetic acid bacteria: a group of bacteria with versatile biotechnological applications. Biotechnol Adv 33(6 pt 2):1260–1271. doi:10.1016/j.biotechadv.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  • Sakurai K, Arai H, Ishii M, Igarashi Y (2011) Transcriptome response to different carbon sources in Acetobacter aceti. Microbiology 157:899–910

    Article  CAS  PubMed  Google Scholar 

  • Sakurai K, Arai H, Ishii M, Igarashi Y (2012) Changes in the gene expression profile of Acetobacter aceti during growth on ethanol. J Biosci Bioeng 113:343–348

    Article  CAS  PubMed  Google Scholar 

  • Sarkar D, Yabusaki M, Hasebe Y, Ho PY, Kohmoto S, Kaga T, Shimizu K (2010) Fermentation and metabolic characteristics of Gluconacetobacter oboediens for different carbon sources. Appl Microbiol Biotechnol 87:127–136

    Article  CAS  PubMed  Google Scholar 

  • Schweiger P, Gross H, Zeiser J, Deppenmeier U (2013) Asymmetric reduction of diketones by two Gluconobacter oxydans oxidoreductases. Appl Microbiol Biotechnol 97:3475–3484

    Article  CAS  PubMed  Google Scholar 

  • Shinjoh M, Setoguchi Y, Hoshino T (1990) Sorbose dissimilation in 2-keto-l-gulonic acid-producing mutant UV10 derived from Gluconobacter melanogenus IFO 3293. Agric Biol Chem 54:2257–2263

    CAS  Google Scholar 

  • Sootsuwan K, Lertwattanasakul N, Thanonkeo P, Matsushita K, Yamada M (2008) Analysis of the respiratory chain in ethanologenic Zymomonas mobilis with a cyanide-resistant bd-type ubiquinol oxidase as the only terminal oxidase and its possible physiological roles. J Mol Microbiol Biotechnol 14:163–175

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama M, Suzuki S, Tonouchi N, Yokozeki K (2003) Transaldolase/glucose-6-phosphate isomerase bifunctional enzyme and ribulokinase as factors to increase xylitol production from d-arabitol in Gluconobacter oxydans. Biosci Biotechnol Biochem 67:2524–2532

    Article  CAS  PubMed  Google Scholar 

  • Tonouchi N, Sugiyama M, Yokozeki K (2003) Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans. Biosci Biotechnol Biochem 67:2648–2651

    Article  CAS  PubMed  Google Scholar 

  • van der Oost J, Schepper M, Stouthamer AH, Westerhoff HV, van Spanning RJ, de Gier JW (1995) Reversed electron transfer through the bc 1 complex enables a cytochrome c oxidase mutant (Δ aa 3/cbb 3) of Paracoccus denitrificans to grow on methylamine. FEBS Lett 371:267–270

    Article  PubMed  Google Scholar 

  • Yakushi T, Matsushita K (2010) Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol 86:1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Ma Y, Wang F, Wei D (2014) Phosphorylation of HPr by HPr kinase in Gluconobacter oxydans 621H. Protein Pept Lett 21:597–601

    Article  PubMed  Google Scholar 

  • Zhong C, Zhang GC, Liu M, Zheng XT, Han PP, Jia SR (2013) Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Appl Microbiol Biotechnol 97:6189–6199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are most grateful to Armin Ehrenreich and Wolfgang Liebl (Technical University of Munich, Germany) for providing the strains and protocols used for generating the G. oxydans deletion mutants. We thank Jayne Louise Wilson (The University of Sheffield, United Kingdom) for advising us on the method of H+/O measurement. We thank Petra Simić, Dietmar Laudert, Günter Pappenberger, and Hans-Peter Hohmann (DSM Nutritional Products) for their scientific input and their continued disposition for discussion.

We also thank DSM Nutritional Products (Kaiseraugst, Switzerland) for financial support. This work was funded by the German Ministry of Education and Research (BMBF) within the GenoMik-Plus and GenoMik-Transfer programs (grants 0313751H and 0315632D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Bringer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Bringer, S., Bott, M. (2016). Central Carbon Metabolism and Respiration in Gluconobacter oxydans . In: Matsushita, K., Toyama, H., Tonouchi, N., Okamoto-Kainuma, A. (eds) Acetic Acid Bacteria. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55933-7_11

Download citation

Publish with us

Policies and ethics