Skip to main content

Advertisement

Log in

Role of TRP ion channels in cancer and tumorigenesis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Transient receptor potential (TRP) channels are recently identified proteins that form a versatile family of ion channels, the majority of which are calcium permeable and exhibit complex regulatory patterns with sensitivity to multiple environmental factors. While this sensitivity has captured early attention, leading to recognition of TRP channels as environmental and chemical sensors, many later studies concentrated on the regulation of intracellular calcium by TRP channels. Due to mutations, dysregulation of ion channel gating or expression levels, normal spatiotemporal patterns of local Ca2+ distribution become distorted. This causes deregulation of downstream effectors sensitive to changes in Ca2+ homeostasis that, in turn, promotes pathophysiological cancer hallmarks, such as enhanced survival, proliferation and invasion. These observations give rise to the appreciation of the important contributions that TRP channels make to many cellular processes controlling cell fate and positioning these channels as important players in cancer regulation. This review discusses the accumulated scientific knowledge focused on TRP channel involvement in regulation of cell fate in various transformed tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ (2007) Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 7:519–530

    Article  CAS  PubMed  Google Scholar 

  2. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  CAS  PubMed  Google Scholar 

  3. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27:6407–6418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  CAS  PubMed  Google Scholar 

  5. Prevarskaya N, Skryma R, Shuba Y (2010) Ion channels and the hallmarks of cancer. Trends Mol Med 16:107–121

    Article  CAS  PubMed  Google Scholar 

  6. Cook SJ, Lockyer PJ (2006) Recent advances in Ca(2+)-dependent Ras regulation and cell proliferation. Cell Calcium 39:101–112

    Article  CAS  PubMed  Google Scholar 

  7. Whitfield JF (1992) Calcium signals and cancer. Crit Rev Oncog 3:55–90

    CAS  PubMed  Google Scholar 

  8. Yamauchi T (2005) Neuronal Ca2+/calmodulin-dependent protein kinase II—discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull 28:1342–1354

    Article  CAS  PubMed  Google Scholar 

  9. McGargill MA, Sharp LL, Bui JD, Hedrick SM, Calbo S (2005) Active Ca2+/calmodulin-dependent protein kinase II gamma B impairs positive selection of T cells by modulating TCR signaling. J Immunol 175:656–664

    Article  CAS  PubMed  Google Scholar 

  10. Lin MY, Zal T, Ch’en IL, Gascoigne NR, Hedrick SM (2005) A pivotal role for the multifunctional calcium/calmodulin-dependent protein kinase II in T cells: from activation to unresponsiveness. J Immunol 174:5583–5592

    Article  CAS  PubMed  Google Scholar 

  11. Rokhlin OW, Taghiyev AF, Bayer KU, Bumcrot D, Koteliansk VE et al (2007) Calcium/calmodulin-dependent kinase II plays an important role in prostate cancer cell survival. Cancer Biol Ther 6:732–742

    Article  CAS  PubMed  Google Scholar 

  12. Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25:6680–6684

    Article  CAS  PubMed  Google Scholar 

  13. Chandel NS, Trzyna WC, McClintock DS, Schumacker PT (2000) Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J Immunol 165:1013–1021

    Article  CAS  PubMed  Google Scholar 

  14. Renard P, Zachary MD, Bougelet C, Mirault ME, Haegeman G et al (1997) Effects of antioxidant enzyme modulations on interleukin-1-induced nuclear factor kappa B activation. Biochem Pharmacol 53:149–160

    Article  CAS  PubMed  Google Scholar 

  15. See V, Rajala NK, Spiller DG, White MR (2004) Calcium-dependent regulation of the cell cycle via a novel MAPK–NF-kappaB pathway in Swiss 3T3 cells. J Cell Biol 166:661–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kriete A, Mayo KL (2009) Atypical pathways of NF-kappaB activation and aging. Exp Gerontol 44:250–255

    Article  CAS  PubMed  Google Scholar 

  17. Liu F, Bardhan K, Yang D, Thangaraju M, Ganapathy V et al (2012) NF-kappaB directly regulates Fas transcription to modulate Fas-mediated apoptosis and tumor suppression. J Biol Chem 287:25530–25540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sheikh MS, Huang Y (2003) Death receptor activation complexes: it takes two to activate TNF receptor 1. Cell Cycle 2:550–552

    CAS  PubMed  Google Scholar 

  19. Escarcega RO, Fuentes-Alexandro S, Garcia-Carrasco M, Gatica A, Zamora A (2007) The transcription factor nuclear factor-kappa B and cancer. Clin Oncol (R Coll Radiol) 19:154–161

    Article  CAS  Google Scholar 

  20. Smith MA, Schnellmann RG (2012) Calpains, mitochondria, and apoptosis. Cardiovasc Res 96:32–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    Article  CAS  PubMed  Google Scholar 

  22. Santella L, Kyozuka K, Hoving S, Munchbach M, Quadroni M et al (2000) Breakdown of cytoskeletal proteins during meiosis of starfish oocytes and proteolysis induced by calpain. Exp Cell Res 259:117–126

    Article  CAS  PubMed  Google Scholar 

  23. Sharma AK, Rohrer B (2004) Calcium-induced calpain mediates apoptosis via caspase-3 in a mouse photoreceptor cell line. J Biol Chem 279:35564–35572

    Article  CAS  PubMed  Google Scholar 

  24. Heit JJ, Apelqvist AA, Gu X, Winslow MM, Neilson JR et al (2006) Calcineurin/NFAT signalling regulates pancreatic beta-cell growth and function. Nature 443:345–349

    Article  CAS  PubMed  Google Scholar 

  25. Wu HY, Tomizawa K, Matsui H (2007) Calpain-calcineurin signaling in the pathogenesis of calcium-dependent disorder. Acta Med Okayama 61:123–137

    CAS  PubMed  Google Scholar 

  26. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356

    Article  CAS  PubMed  Google Scholar 

  27. Parekh AB, Fleig A, Penner R (1997) The store-operated calcium current I(CRAC): nonlinear activation by InsP3 and dissociation from calcium release. Cell 89:973–980

    Article  CAS  PubMed  Google Scholar 

  28. Stiber J, Hawkins A, Zhang ZS, Wang S, Burch J et al (2008) STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol 10:688–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Prevarskaya N, Skryma R, Shuba Y (2004) Ca2+ homeostasis in apoptotic resistance of prostate cancer cells. Biochem Biophys Res Commun 322:1326–1335

    Article  CAS  PubMed  Google Scholar 

  30. Vanden Abeele F, Skryma R, Shuba Y, Van Coppenolle F, Slomianny C et al (2002) Bcl-2-dependent modulation of Ca(2+) homeostasis and store-operated channels in prostate cancer cells. Cancer Cell 1:169–179

    Article  CAS  PubMed  Google Scholar 

  31. Vanoverberghe K, Vanden Abeele F, Mariot P, Lepage G, Roudbaraki M et al (2004) Ca2+ homeostasis and apoptotic resistance of neuroendocrine-differentiated prostate cancer cells. Cell Death Differ 11:321–330

    Article  CAS  PubMed  Google Scholar 

  32. Kahl CR, Means AR (2003) Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev 24:719–736

    Article  CAS  PubMed  Google Scholar 

  33. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  CAS  PubMed  Google Scholar 

  34. Bidaux G, Flourakis M, Thebault S, Zholos A, Beck B et al (2007) Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function. J Clin Invest 117:1647–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xin H, Tanaka H, Yamaguchi M, Takemori S, Nakamura A et al (2005) Vanilloid receptor expressed in the sarcoplasmic reticulum of rat skeletal muscle. Biochem Biophys Res Commun 332:756–762

    Article  CAS  PubMed  Google Scholar 

  36. Xu XZ, Moebius F, Gill DL, Montell C (2001) Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci U S A 98:10692–10697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38:233–252

    Article  CAS  PubMed  Google Scholar 

  38. Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G et al (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25:193–205

    Article  PubMed  CAS  Google Scholar 

  39. Hoyer-Hansen M, Jaattela M (2007) Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14:1576–1582

    Article  CAS  PubMed  Google Scholar 

  40. Johnson JD, Han Z, Otani K, Ye H, Zhang Y et al (2004) RyR2 and calpain-10 delineate a novel apoptosis pathway in pancreatic islets. J Biol Chem 279:24794–24802

    Article  CAS  PubMed  Google Scholar 

  41. Zeng X, Sikka SC, Huang L, Sun C, Xu C et al (2010) Novel role for the transient receptor potential channel TRPM2 in prostate cancer cell proliferation. Prostate Cancer Prostatic Dis 13:195–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bidaux G, Beck B, Zholos A, Gordienko D, Lemonnier L et al (2012) Regulation of activity of transient receptor potential melastatin 8 (TRPM8) channel by its short isoforms. J Biol Chem 287:2948–2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bidaux G, Borowiec AS, Gordienko D, Beck B, Shapovalov GG et al (2015) Epidermal TRPM8 channel isoform controls the balance between keratinocyte proliferation and differentiation in a cold-dependent manner. Proc Natl Acad Sci U S A 112:E3345–E3354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hardie RC, Minke B (1992) The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8:643–651

    Article  CAS  PubMed  Google Scholar 

  45. Minke B, Selinger Z (1996) The roles of trp and calcium in regulating photoreceptor function in Drosophila. Curr Opin Neurobiol 6:459–466

    Article  CAS  PubMed  Google Scholar 

  46. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    Article  CAS  PubMed  Google Scholar 

  47. Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193–198

    Article  CAS  PubMed  Google Scholar 

  48. Phillips AM, Bull A, Kelly LE (1992) Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron 8:631–642

    Article  CAS  PubMed  Google Scholar 

  49. Niemeyer BA, Suzuki E, Scott K, Jalink K, Zuker CS (1996) The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell 85:651–659

    Article  CAS  PubMed  Google Scholar 

  50. Xu XZ, Chien F, Butler A, Salkoff L, Montell C (2000) TRPgamma, a drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron 26:647–657

    Article  CAS  PubMed  Google Scholar 

  51. Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G et al (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci U S A 92:9652–9656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  CAS  PubMed  Google Scholar 

  53. Owsianik G, D’Hoedt D, Voets T, Nilius B (2006) Structure-function relationship of the TRP channel superfamily. Rev Physiol Biochem Pharmacol 156:61–90

    CAS  PubMed  Google Scholar 

  54. Yao X, Kwan HY, Huang Y (2005) Regulation of TRP channels by phosphorylation. Neurosignals 14:273–280

    Article  CAS  PubMed  Google Scholar 

  55. Roderick HL, Cook SJ (2008) Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 8:361–375

    Article  CAS  PubMed  Google Scholar 

  56. Ariano P, Dalmazzo S, Owsianik G, Nilius B, Lovisolo D (2011) TRPC channels are involved in calcium-dependent migration and proliferation in immortalized GnRH neurons. Cell Calcium 49:387–394

    Article  CAS  PubMed  Google Scholar 

  57. Fabian A, Fortmann T, Bulk E, Bomben VC, Sontheimer H et al (2011) Chemotaxis of MDCK-F cells toward fibroblast growth factor-2 depends on transient receptor potential canonical channel 1. Pflugers Arch 461:295–306

    Article  CAS  PubMed  Google Scholar 

  58. Fabian A, Fortmann T, Dieterich P, Riethmuller C, Schon P et al (2008) TRPC1 channels regulate directionality of migrating cells. Pflugers Arch 457:475–484

    Article  CAS  PubMed  Google Scholar 

  59. Zanou N, Shapovalov G, Louis M, Tajeddine N, Gallo C et al (2010) Role of TRPC1 channel in skeletal muscle function. Am J Physiol Cell Physiol 298:C149–C162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marasa BS, Rao JN, Zou T, Liu L, Keledjian KM et al (2006) Induced TRPC1 expression sensitizes intestinal epithelial cells to apoptosis by inhibiting NF-kappaB activation through Ca2+ influx. Biochem J 397:77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. He B, Liu F, Ruan J, Li A, Chen J et al (2012) Silencing TRPC1 expression inhibits invasion of CNE2 nasopharyngeal tumor cells. Oncol Rep 27:1548–1554

    CAS  PubMed  Google Scholar 

  62. Bomben VC, Sontheimer H (2010) Disruption of transient receptor potential canonical channel 1 causes incomplete cytokinesis and slows the growth of human malignant gliomas. Glia 58:1145–1156

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bomben VC, Turner KL, Barclay TT, Sontheimer H (2011) Transient receptor potential canonical channels are essential for chemotactic migration of human malignant gliomas. J Cell Physiol 226:1879–1888

    Article  CAS  PubMed  Google Scholar 

  64. Tajeddine N, Gailly P (2012) TRPC1 protein channel is major regulator of epidermal growth factor receptor signaling. J Biol Chem 287:16146–16157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Premkumar LS, Abooj M (2013) TRP channels and analgesia. Life Sci 92:415–424

    Article  CAS  PubMed  Google Scholar 

  66. Yue L, Peng JB, Hediger MA, Clapham DE (2001) CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature 410:705–709

    Article  CAS  PubMed  Google Scholar 

  67. Bodding M, Flockerzi V (2004) Ca2+ dependence of the Ca2 + −selective TRPV6 channel. J Biol Chem 279:36546–36552

    Article  PubMed  CAS  Google Scholar 

  68. Bodding M, Wissenbach U, Flockerzi V (2002) The recombinant human TRPV6 channel functions as Ca2+ sensor in human embryonic kidney and rat basophilic leukemia cells. J Biol Chem 277:36656–36664

    Article  CAS  PubMed  Google Scholar 

  69. Bolanz KA, Hediger MA, Landowski CP (2008) The role of TRPV6 in breast carcinogenesis. Mol Cancer Ther 7:271–279

    Article  CAS  PubMed  Google Scholar 

  70. Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H et al (1999) Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem 274:22739–22746

    Article  CAS  PubMed  Google Scholar 

  71. Wissenbach U, Niemeyer BA, Fixemer T, Schneidewind A, Trost C et al (2001) Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J Biol Chem 276:19461–19468

    Article  CAS  PubMed  Google Scholar 

  72. Fixemer T, Wissenbach U, Flockerzi V, Bonkhoff H (2003) Expression of the Ca2 + −selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. Oncogene 22:7858–7861

    Article  CAS  PubMed  Google Scholar 

  73. Bodding M, Fecher-Trost C, Flockerzi V (2003) Store-operated Ca2+ current and TRPV6 channels in lymph node prostate cancer cells. J Biol Chem 278:50872–50879

    Article  PubMed  CAS  Google Scholar 

  74. Peng JB, Zhuang L, Berger UV, Adam RM, Williams BJ et al (2001) CaT1 expression correlates with tumor grade in prostate cancer. Biochem Biophys Res Commun 282:729–734

    Article  CAS  PubMed  Google Scholar 

  75. Vanden Abeele F, Roudbaraki M, Shuba Y, Skryma R, Prevarskaya N (2003) Store-operated Ca2+ current in prostate cancer epithelial cells. Role of endogenous Ca2+ transporter type 1. J Biol Chem 278:15381–15389

    Article  CAS  PubMed  Google Scholar 

  76. Wissenbach U, Niemeyer B, Himmerkus N, Fixemer T, Bonkhoff H et al (2004) TRPV6 and prostate cancer: cancer growth beyond the prostate correlates with increased TRPV6 Ca2+ channel expression. Biochem Biophys Res Commun 322:1359–1363

    Article  CAS  PubMed  Google Scholar 

  77. Zhuang L, Peng JB, Tou L, Takanaga H, Adam RM et al (2002) Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. Lab Investig 82:1755–1764

    Article  CAS  PubMed  Google Scholar 

  78. Peters AA, Simpson PT, Bassett JJ, Lee JM, Da Silva L et al (2012) Calcium channel TRPV6 as a potential therapeutic target in estrogen receptor-negative breast cancer. Mol Cancer Ther 11:2158–2168

    Article  CAS  PubMed  Google Scholar 

  79. Fang D, Setaluri V (2000) Expression and Up-regulation of alternatively spliced transcripts of melastatin, a melanoma metastasis-related gene, in human melanoma cells. Biochem Biophys Res Commun 279:53–61

    Article  CAS  PubMed  Google Scholar 

  80. Raphael M, Lehen’kyi V, Vandenberghe M, Beck B, Khalimonchyk S et al (2014) TRPV6 calcium channel translocates to the plasma membrane via Orai1-mediated mechanism and controls cancer cell survival. Proc Natl Acad Sci U S A 111:E3870–E3879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vercelli C, Barbero R, Cuniberti B, Racca S, Abbadessa G et al (2014) Transient receptor potential vanilloid 1 expression and functionality in mcf-7 cells: a preliminary investigation. J Breast Cancer 17:332–338

    Article  PubMed  PubMed Central  Google Scholar 

  82. Morelli MB, Amantini C, Nabissi M, Liberati S, Cardinali C et al (2014) Cross-talk between alpha1D-adrenoceptors and transient receptor potential vanilloid type 1 triggers prostate cancer cell proliferation. BMC Cancer 14:921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Monet M, Lehen’kyi V, Gackiere F, Firlej V, Vandenberghe M et al (2010) Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res 70:1225–1235

    Article  CAS  PubMed  Google Scholar 

  84. Nabissi M, Morelli MB, Santoni M, Santoni G (2013) Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents. Carcinogenesis 34:48–57

    Article  CAS  PubMed  Google Scholar 

  85. Zhou K, Zhang SS, Yan Y, Zhao S (2014) Overexpression of transient receptor potential vanilloid 2 is associated with poor prognosis in patients with esophageal squamous cell carcinoma. Med Oncol 31:17

    Article  PubMed  CAS  Google Scholar 

  86. Cai R, Ren G, Ding X, Wang YZ, Jin YN (2012) Essential role of TRPC6 in the proliferation of gastric cancer and its mechanism. Zhonghua Zhong Liu Za Zhi 34:577–581

    CAS  PubMed  Google Scholar 

  87. Ma X, Cai Y, He D, Zou C, Zhang P et al (2012) Transient receptor potential channel TRPC5 is essential for P-glycoprotein induction in drug-resistant cancer cells. Proc Natl Acad Sci U S A 109:16282–16287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hopkins MM, Feng X, Liu M, Parker LP, Koh DW (2015) Inhibition of the transient receptor potential melastatin-2 channel causes increased DNA damage and decreased proliferation in breast adenocarcinoma cells. Int J Oncol 46:2267–2276

    PubMed  PubMed Central  Google Scholar 

  89. Prawitt D, Enklaar T, Klemm G, Gartner B, Spangenberg C et al (2000) Identification and characterization of MTR1, a novel gene with homology to melastatin (MLSN1) and the trp gene family located in the BWS-WT2 critical region on chromosome 11p15.5 and showing allele-specific expression. Hum Mol Genet 9:203–216

    Article  CAS  PubMed  Google Scholar 

  90. Suguro M, Tagawa H, Kagami Y, Okamoto M, Ohshima K et al (2006) Expression profiling analysis of the CD5+ diffuse large B-cell lymphoma subgroup: development of a CD5 signature. Cancer Sci 97:868–874

    Article  CAS  PubMed  Google Scholar 

  91. Singh J, Manickam P, Shmoish M, Natik S, Denyer G et al (2006) Annotation of androgen dependence to human prostate cancer-associated genes by microarray analysis of mouse prostate. Cancer Lett 237:298–304

    Article  CAS  PubMed  Google Scholar 

  92. Schinke EN, Bii V, Nalla A, Rae DT, Tedrick L et al (2014) A novel approach to identify driver genes involved in androgen-independent prostate cancer. Mol Cancer 13:120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Armisen R, Marcelain K, Simon F, Tapia JC, Toro J et al (2011) TRPM4 enhances cell proliferation through up-regulation of the beta-catenin signaling pathway. J Cell Physiol 226:103–109

    Article  CAS  PubMed  Google Scholar 

  94. Sun HS, Jackson MF, Martin LJ, Jansen K, Teves L et al (2009) Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 12:1300–1307

    Article  CAS  PubMed  Google Scholar 

  95. Guilbert A, Gautier M, Dhennin-Duthille I, Haren N, Sevestre H et al (2009) Evidence that TRPM7 is required for breast cancer cell proliferation. Am J Physiol Cell Physiol 297:C493–C502

    Article  CAS  PubMed  Google Scholar 

  96. Kim BJ (2013) Involvement of melastatin type transient receptor potential 7 channels in ginsenoside Rd-induced apoptosis in gastric and breast cancer cells. J Ginseng Res 37:201–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rybarczyk P, Gautier M, Hague F, Dhennin-Duthille I, Chatelain D et al (2012) Transient receptor potential melastatin-related 7 channel is overexpressed in human pancreatic ductal adenocarcinomas and regulates human pancreatic cancer cell migration. Int J Cancer 131:E851–E861

    Article  CAS  PubMed  Google Scholar 

  98. Yee NS, Kazi AA, Li Q, Yang Z, Berg A et al (2015) Aberrant over-expression of TRPM7 ion channels in pancreatic cancer: required for cancer cell invasion and implicated in tumor growth and metastasis. Biol Open 4:507–514

    Article  PubMed  PubMed Central  Google Scholar 

  99. Dou Y, Li Y, Chen J, Wu S, Xiao X et al (2013) Inhibition of cancer cell proliferation by midazolam by targeting transient receptor potential melastatin 7. Oncol Lett 5:1010–1016

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen JP, Wang J, Luan Y, Wang CX, Li WH et al (2015) TRPM7 promotes the metastatic process in human nasopharyngeal carcinoma. Cancer Lett 356:483–490

    Article  CAS  PubMed  Google Scholar 

  101. Wang J, Liao QJ, Zhang Y, Zhou H, Luo CH et al (2014) TRPM7 is required for ovarian cancer cell growth, migration and invasion. Biochem Biophys Res Commun 454:547–553

    Article  CAS  PubMed  Google Scholar 

  102. Sun Y, Selvaraj S, Varma A, Derry S, Sahmoun AE et al (2013) Increase in serum Ca2+/Mg2+ ratio promotes proliferation of prostate cancer cells by activating TRPM7 channels. J Biol Chem 288:255–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Visser D, Langeslag M, Kedziora KM, Klarenbeek J, Kamermans A et al (2013) TRPM7 triggers Ca2+ sparks and invadosome formation in neuroblastoma cells. Cell Calcium 54:404–415

    Article  CAS  PubMed  Google Scholar 

  104. Lange I, Koomoa DL (2014) MycN promotes TRPM7 expression and cell migration in neuroblastoma through a process that involves polyamines. FEBS Open Bio 4:966–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Middelbeek J, Visser D, Henneman L, Kamermans A, Kuipers AJ et al (2015) TRPM7 maintains progenitor-like features of neuroblastoma cells: implications for metastasis formation. Oncotarget 6:8760–8776

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lin CM, Ma JM, Zhang L, Hao ZY, Zhou J et al (2015) Inhibition of transient receptor potential melastain 7 enhances apoptosis induced by TRAIL in PC-3 cells. Asian Pac J Cancer Prev 16:4469–4475

    Article  PubMed  Google Scholar 

  107. Kim MC, Lee HJ, Lim B, Ha KT, Kim SY et al (2014) Quercetin induces apoptosis by inhibiting MAPKs and TRPM7 channels in AGS cells. Int J Mol Med 33:1657–1663

    CAS  PubMed  Google Scholar 

  108. Duncan LM, Deeds J, Hunter J, Shao J, Holmgren LM et al (1998) Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 58:1515–1520

    CAS  PubMed  Google Scholar 

  109. Fleig A, Penner R (2004) The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 25:633–639

    Article  CAS  PubMed  Google Scholar 

  110. Shen Y, Rampino MA, Carroll RC, Nawy S (2012) G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gbetagamma dimer. Proc Natl Acad Sci U S A 109:8752–8757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Deeds J, Cronin F, Duncan LM (2000) Patterns of melastatin mRNA expression in melanocytic tumors. Hum Pathol 31:1346–1356

    Article  CAS  PubMed  Google Scholar 

  112. Duncan LM, Deeds J, Cronin FE, Donovan M, Sober AJ et al (2001) Melastatin expression and prognosis in cutaneous malignant melanoma. J Clin Oncol 19:568–576

    CAS  PubMed  Google Scholar 

  113. Bodding M (2007) TRP proteins and cancer. Cell Signal 19:617–624

    Article  PubMed  CAS  Google Scholar 

  114. Miller AJ, Du J, Rowan S, Hershey CL, Widlund HR et al (2004) Transcriptional regulation of the melanoma prognostic marker melastatin (TRPM1) by MITF in melanocytes and melanoma. Cancer Res 64:509–516

    Article  CAS  PubMed  Google Scholar 

  115. Zhiqi S, Soltani MH, Bhat KM, Sangha N, Fang D et al (2004) Human melastatin 1 (TRPM1) is regulated by MITF and produces multiple polypeptide isoforms in melanocytes and melanoma. Melanoma Res 14:509–516

    Article  CAS  PubMed  Google Scholar 

  116. Guo H, Carlson JA, Slominski A (2012) Role of TRPM in melanocytes and melanoma. Exp Dermatol 21:650–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xia B, Yang S, Liu T, Lou G (2015) miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting cyclin D1 and CDK6. Mol Cancer 14:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Lis A, Wissenbach U, Philipp SE (2005) Transcriptional regulation and processing increase the functional variability of TRPM channels. Naunyn Schmiedeberg’s Arch Pharmacol 371:315–324

    Article  CAS  Google Scholar 

  119. Erickson LA, Letts GA, Shah SM, Shackelton JB, Duncan LM (2009) TRPM1 (Melastatin-1/MLSN1) mRNA expression in spitz nevi and nodular melanomas. Mod Pathol 22:969–976

    Article  CAS  PubMed  Google Scholar 

  120. Zhang W, Hirschler-Laszkiewicz I, Tong Q, Conrad K, Sun SC et al (2006) TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage. Am J Physiol Cell Physiol 290:C1146–C1159

    Article  CAS  PubMed  Google Scholar 

  121. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M et al (2002) LTRPC2 Ca2 + −permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173

    Article  CAS  PubMed  Google Scholar 

  122. Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A et al (2009) TRPM2 functions as a lysosomal Ca2+−release channel in beta cells. Sci Signal 2, ra23

    Article  PubMed  PubMed Central  Google Scholar 

  123. Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD et al (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 143:186–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. McNulty S, Fonfria E (2005) The role of TRPM channels in cell death. Pflugers Arch 451:235–242

    Article  CAS  PubMed  Google Scholar 

  125. Zhang W, Chu X, Tong Q, Cheung JY, Conrad K et al (2003) A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem 278:16222–16229

    Article  CAS  PubMed  Google Scholar 

  126. Pigozzi D, Ducret T, Tajeddine N, Gala JL, Tombal B et al (2006) Calcium store contents control the expression of TRPC1, TRPC3 and TRPV6 proteins in LNCaP prostate cancer cell line. Cell Calcium 39:401–415

    Article  CAS  PubMed  Google Scholar 

  127. Misra UK, Mowery YM, Gawdi G, Pizzo SV (2011) Loss of cell surface TFII-I promotes apoptosis in prostate cancer cells stimulated with activated alpha(2) -macroglobulin. J Cell Biochem 112:1685–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Feng SL, Sun MR, Li TT, Xin Y, Xu CQ et al (2011) Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes. Biochem Biophys Res Commun

  129. Zhang H, Zhou L, Shi W, Song N, Yu K et al (2012) A mechanism underlying the effects of polyunsaturated fatty acids on breast cancer. Int J Mol Med 30:487–494

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Tao X, Zhao N, Jin H, Zhang Z, Liu Y et al (2013) FSH enhances the proliferation of ovarian cancer cells by activating transient receptor potential channel C3. Endocr Relat Cancer 20:415–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Antoniotti S, Fiorio Pla A, Barral S, Scalabrino O, Munaron L et al (2006) Interaction between TRPC channel subunits in endothelial cells. J Recept Signal Transduct Res 26:225–240

    Article  CAS  PubMed  Google Scholar 

  132. Vanden Abeele F, Lemonnier L, Thebault S, Lepage G, Parys JB et al (2004) Two types of store-operated Ca2+ channels with different activation modes and molecular origin in LNCaP human prostate cancer epithelial cells. J Biol Chem 279:30326–30337

    Article  CAS  PubMed  Google Scholar 

  133. Lazzeri M, Vannucchi MG, Spinelli M, Bizzoco E, Beneforti P et al (2005) Transient receptor potential vanilloid type 1 (TRPV1) expression changes from normal urothelium to transitional cell carcinoma of human bladder. Eur Urol 48:691–698

    Article  CAS  PubMed  Google Scholar 

  134. Sanchez MG, Sanchez AM, Collado B, Malagarie-Cazenave S, Olea N et al (2005) Expression of the transient receptor potential vanilloid 1 (TRPV1) in LNCaP and PC-3 prostate cancer cells and in human prostate tissue. Eur J Pharmacol 515:20–27

    Article  CAS  PubMed  Google Scholar 

  135. Ziglioli F, Frattini A, Maestroni U, Dinale F, Ciufifeda M et al (2009) Vanilloid-mediated apoptosis in prostate cancer cells through a TRPV-1 dependent and a TRPV-1-independent mechanism. Acta Biomed 80:13–20

    CAS  PubMed  Google Scholar 

  136. Santoni G, Caprodossi S, Farfariello V, Liberati S, Gismondi A et al (2012) Antioncogenic effects of transient receptor potential vanilloid 1 in the progression of transitional urothelial cancer of human bladder. ISRN Urol 2012:458238

    PubMed  PubMed Central  Google Scholar 

  137. Yudin Y, Rohacs T (2011) Regulation of TRPM8 channel activity. Mol Cell Endocrinol 353:68–74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Shapovalov G, Gkika D, Devilliers M, Kondratskyi A, Gordienko D et al (2013) Opiates modulate thermosensation by internalizing cold receptor TRPM8. Cell Rep

  139. Vanden Abeele F, Kondratskyi A, Dubois C, Shapovalov G, Gkika D et al (2013) Complex modulation of TRPM8 cold receptor by volatile anaesthetics and role in complications of general anaesthesia. J Cell Sci

  140. Tsavaler L, Shapero MH, Morkowski S, Laus R (2001) Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res 61:3760–3769

    CAS  PubMed  Google Scholar 

  141. Prevarskaya N, Skryma R, Bidaux G, Flourakis M, Shuba Y (2007) Ion channels in death and differentiation of prostate cancer cells. Cell Death Differ 14:1295–1304

    Article  CAS  PubMed  Google Scholar 

  142. Fuessel S, Sickert D, Meye A, Klenk U, Schmidt U et al (2003) Multiple tumor marker analyses (PSA, hK2, PSCA, trp-p8) in primary prostate cancers using quantitative RT-PCR. Int J Oncol 23:221–228

    CAS  PubMed  Google Scholar 

  143. Gkika D, Flourakis M, Lemonnier L, Prevarskaya N (2010) PSA reduces prostate cancer cell motility by stimulating TRPM8 activity and plasma membrane expression. Oncogene 29:4611–4616

    Article  CAS  PubMed  Google Scholar 

  144. Yang ZH, Wang XH, Wang HP, Hu LQ (2009) Effects of TRPM8 on the proliferation and motility of prostate cancer PC-3 cells. Asian J Androl 11:157–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang L, Barritt GJ (2004) Evidence that TRPM8 is an androgen-dependent Ca2+ channel required for the survival of prostate cancer cells. Cancer Res 64:8365–8373

    Article  CAS  PubMed  Google Scholar 

  146. Valero ML, Mello de Queiroz F, Stuhmer W, Viana F, Pardo LA (2012) TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells. PLoS One 7, e51825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bidaux G, Roudbaraki M, Merle C, Crepin A, Delcourt P et al (2005) Evidence for specific TRPM8 expression in human prostate secretory epithelial cells: functional androgen receptor requirement. Endocr Relat Cancer 12:367–382

    Article  CAS  PubMed  Google Scholar 

  148. Henshall SM, Afar DE, Hiller J, Horvath LG, Quinn DI et al (2003) Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse. Cancer Res 63:4196–4203

    CAS  PubMed  Google Scholar 

  149. Berges RR, Vukanovic J, Epstein JI, CarMichel M, Cisek L et al (1995) Implication of cell kinetic changes during the progression of human prostatic cancer. Clin Cancer Res 1:473–480

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Kiessling A, Fussel S, Schmitz M, Stevanovic S, Meye A et al (2003) Identification of an HLA-A*0201-restricted T-cell epitope derived from the prostate cancer-associated protein trp-p8. Prostate 56:270–279

    Article  CAS  PubMed  Google Scholar 

  151. Nealen ML, Gold MS, Thut PD, Caterina MJ (2003) TRPM8 mRNA is expressed in a subset of cold-responsive trigeminal neurons from rat. J Neurophysiol 90:515–520

    Article  CAS  PubMed  Google Scholar 

  152. Thebault S, Lemonnier L, Bidaux G, Flourakis M, Bavencoffe A et al (2005) Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells. J Biol Chem 280:39423–39435

    Article  CAS  PubMed  Google Scholar 

  153. Prevarskaya N, Zhang L, Barritt G (2007) TRP channels in cancer. Biochim Biophys Acta 1772:937–946

    Article  CAS  PubMed  Google Scholar 

  154. Shapovalov G, Lehen’kyi V, Skryma R, Prevarskaya N (2011) TRP channels in cell survival and cell death in normal and transformed cells. Cell Calcium 50:295–302

    Article  CAS  PubMed  Google Scholar 

  155. Middelbeek J, Kuipers AJ, Henneman L, Visser D, Eidhof I et al (2012) TRPM7 is required for breast tumor cell metastasis. Cancer Res 72:4250–4261

    Article  CAS  PubMed  Google Scholar 

  156. Meng X, Cai C, Wu J, Cai S, Ye C et al (2013) TRPM7 mediates breast cancer cell migration and invasion through the MAPK pathway. Cancer Lett 333:96–102

    Article  CAS  PubMed  Google Scholar 

  157. Guilbert A, Gautier M, Dhennin-Duthille I, Rybarczyk P, Sahni J et al (2013) Transient receptor potential melastatin 7 is involved in oestrogen receptor-negative metastatic breast cancer cells migration through its kinase domain. Eur J Cancer

  158. Yu H, Zhang Z, Lis A, Penner R, Fleig A (2013) TRPM7 is regulated by halides through its kinase domain. Cell Mol Life Sci 70:2757–2771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Davis FM, Azimi I, Faville RA, Peters AA, Jalink K et al (2014) Induction of epithelial-mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene 33:2307–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wang J, Xiao L, Luo CH, Zhou H, Hu J et al (2014) Overexpression of TRPM7 is associated with poor prognosis in human ovarian carcinoma. Asian Pac J Cancer Prev 15:3955–3958

    Article  PubMed  Google Scholar 

  161. Okamoto Y, Ohkubo T, Ikebe T, Yamazaki J (2012) Blockade of TRPM8 activity reduces the invasion potential of oral squamous carcinoma cell lines. Int J Oncol 40:1431–1440

    CAS  PubMed  Google Scholar 

  162. Cucu D, Chiritoiu G, Petrescu S, Babes A, Stanica L et al (2014) Characterization of functional transient receptor potential melastatin 8 channels in human pancreatic ductal adenocarcinoma cells. Pancreas 43:795–800

    Article  CAS  PubMed  Google Scholar 

  163. Du GJ, Li JH, Liu WJ, Liu YH, Zhao B et al (2014) The combination of TRPM8 and TRPA1 expression causes an invasive phenotype in lung cancer. Tumour Biol 35:1251–1261

    Article  CAS  PubMed  Google Scholar 

  164. Gkika D, Lemonnier L, Shapovalov G, Gordienko D, Poux C et al (2015) TRP channel-associated factors are a novel protein family that regulates TRPM8 trafficking and activity. J Cell Biol 208:89–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Monet M, Gkika D, Lehen’kyi V, Pourtier A, Vanden Abeele F et al (2009) Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation. Biochim Biophys Acta 1793:528–539

    Article  CAS  PubMed  Google Scholar 

  166. Costa-Pereira AP, Cotter TG (1999) Molecular and cellular biology of prostate cancer-the role of apoptosis as a target for therapy. Prostate Cancer Prostatic Dis 2:126–139

    Article  CAS  PubMed  Google Scholar 

  167. Tapia-Vieyra JV, Mas-Oliva J (2001) Apoptosis and cell death channels in prostate cancer. Arch Med Res 32:175–185

    Article  CAS  PubMed  Google Scholar 

  168. Wertz IE, Dixit VM (2000) Characterization of calcium release-activated apoptosis of LNCaP prostate cancer cells. J Biol Chem 275:11470–11477

    Article  CAS  PubMed  Google Scholar 

  169. Xue W, Zender L, Miething C, Dickins RA, Hernando E et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zeng B, Yuan C, Yang X, Atkin SL, Xu SZ (2013) TRPC channels and their splice variants are essential for promoting human ovarian cancer cell proliferation and tumorigenesis. Curr Cancer Drug Targets 13:103–116

    Article  CAS  PubMed  Google Scholar 

  171. Semenova SB, Vassilieva IO, Fomina AF, Runov AL, Negulyaev YA (2009) Endogenous expression of TRPV5 and TRPV6 calcium channels in human leukemia K562 cells. Am J Physiol Cell Physiol 296:C1098–C1104

    Article  CAS  PubMed  Google Scholar 

  172. Wu Y, Miyamoto T, Li K, Nakagomi H, Sawada N et al (2011) Decreased expression of the epithelial Ca2+ channel TRPV5 and TRPV6 in human renal cell carcinoma associated with vitamin D receptor. J Urol 186:2419–2425

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from INSERM, la Ligue Nationale Contre le Cancer, le Ministere de l‘Education Nationale, Region Nord/Pas-de-Calais.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Prevarskaya.

Additional information

This article is a contribution to the Special Issue on the Role of TRP Ion Channels in Physiology and Pathology - Guest Editor: Armen Akopian

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapovalov, G., Ritaine, A., Skryma, R. et al. Role of TRP ion channels in cancer and tumorigenesis. Semin Immunopathol 38, 357–369 (2016). https://doi.org/10.1007/s00281-015-0525-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0525-1

Keywords

Navigation