Skip to main content
Log in

TRPC1 channels regulate directionality of migrating cells

  • Signaling and Cell Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cell migration depends on the generation of structural asymmetry and on different steps: protrusion and adhesion at the front and traction and detachment at the rear part of the cell. The activity of Ca2+ channels coordinate these steps by arranging intracellular Ca2+ signals along the axis of movement. Here, we investigated the role of the putative mechanosensitive canonical transient receptor potential channel 1 (TRPC1) in cell migration. We analyzed its function in transformed renal epithelial (Madin–Darby canine kidney-focus) cells with variation of TRPC1 expression. As shown by time lapse video microscopy, TRPC1 knockdown cells have partially lost their polarity and the ability to persistently migrate into a given direction. This failure is linked to the suppression of a local Ca2+ gradient at the front of migrating TRPC1 knockdown cells, whereas TRPC1 overexpression leads to steeper Ca2+ gradients. We propose that the Ca2+ signaling events regulated by TRPC1 within the lamellipodium determine polarity and directed cell migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arora PD, McCulloch CA (1996) Dependence of fibroblast migration on actin severing activity of gelsolin. J Biol Chem 271:20516–20523

    Article  PubMed  CAS  Google Scholar 

  2. Bamburg JR (1999) Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol 15:185–230

    Article  PubMed  CAS  Google Scholar 

  3. Bowman CL, Gottlieb PA, Suchyna TM, Murphy YK, Sachs F (2007) Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, mechanisms and pharmacology. Toxicon 49:249–270

    Article  PubMed  CAS  Google Scholar 

  4. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

  5. Brundage RA, Fogarty KE, Tuft RA, Fay FS (1993) Chemotaxis of newt eosinophils: calcium regulation of chemotactic response. Am J Physiol 265:C1527–C1543

    PubMed  CAS  Google Scholar 

  6. Delorme V, Machacek M, DerMardirossian C, Anderson KL, Wittmann T, Hanein D, Waterman-Storer C, Danuser G, Bokoch GM (2007) Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev Cell 13:646–662

    Article  PubMed  CAS  Google Scholar 

  7. Dieterich P, Klages R, Preuss R, Schwab A (2008) Anomalous dynamics of cell migration. Proc Natl Acad Sci U S A 105:459–463

    Article  PubMed  CAS  Google Scholar 

  8. Doyle AD, Lee J (2005) Cyclic changes in keratocyte speed and traction stress arise from Ca2+-dependent regulation of cell adhesiveness. J Cell Sci 118:369–379

    Article  PubMed  CAS  Google Scholar 

  9. Doyle A, Marganski W, Lee J (2004) Calcium transients induce spatially coordinated increases in traction force during the movement of fish keratocytes. J Cell Sci 117:2203–2214

    Article  PubMed  CAS  Google Scholar 

  10. Dreval V, Dieterich P, Stock C, Schwab A (2005) The role of Ca2+ transport across the plasma membrane for cell migration. Cell Physiol Biochem 16:119–126

    Article  PubMed  CAS  Google Scholar 

  11. Eddy RJ, Pierini LM, Matsumura F, Maxfield FR (2000) Ca2+-dependent myosin II activation is required for uropod retraction during neutrophil migration. J Cell Sci 113(Pt 7):1287–1298

    PubMed  CAS  Google Scholar 

  12. Franco SJ, Huttenlocher A (2005) Regulating cell migration: calpains make the cut. J Cell Sci 118:3829–3838

    Article  PubMed  CAS  Google Scholar 

  13. Glogauer M, Arora P, Yao G, Sokholov I, Ferrier J, McCulloch CA (1997) Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. J Cell Sci 110(Pt 1):11–21

    PubMed  CAS  Google Scholar 

  14. Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F, Martinac B, Hamill OP, Honore E (2008) Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch 455(6):1097–1103

    Article  PubMed  CAS  Google Scholar 

  15. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  16. Hahn K, DeBiasio R, Taylor DL (1992) Patterns of elevated free calcium and calmodulin activation in living cells. Nature 359:736–738

    Article  PubMed  CAS  Google Scholar 

  17. Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    PubMed  CAS  Google Scholar 

  18. Huang JB, Kindzelskii AL, Clark AJ, Petty HR (2004) Identification of channels promoting calcium spikes and waves in HT1080 tumor cells: their apparent roles in cell motility and invasion. Cancer Res 64:2482–2489

    Article  PubMed  CAS  Google Scholar 

  19. Jacques-Fricke BT, Seow Y, Gottlieb PA, Sachs F, Gomez TM (2006) Ca2+ influx through mechanosensitive channels inhibits neurite outgrowth in opposition to other influx pathways and release from intracellular stores. J Neurosci 26:5656–5664

    Article  PubMed  CAS  Google Scholar 

  20. Kimura C, Oike M, Koyama T, Ito Y (2001) Alterations of Ca2+ mobilizing properties in migrating endothelial cells. Am J Physiol Heart Circ Physiol 281:H745–H754

    PubMed  CAS  Google Scholar 

  21. Kindzelskii AL, Petty HR (2005) Ion channel clustering enhances weak electric field detection by neutrophils: apparent roles of SKF96365-sensitive cation channels and myeloperoxidase trafficking in cellular responses. Eur Biophys J 35:1–26

    Article  PubMed  CAS  Google Scholar 

  22. Komuro H, Rakic P (1996) Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron 17:275–285

    Article  PubMed  CAS  Google Scholar 

  23. Lawson MA, Maxfield FR (1995) Ca(2+)- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 377:75–79

    Article  PubMed  CAS  Google Scholar 

  24. Lee J, Ishihara A, Oxford G, Johnson B, Jacobson K (1999) Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400:382–386

    Article  PubMed  CAS  Google Scholar 

  25. Li Y, Jia YC, Cui K, Li N, Zheng ZY, Wang YZ, Yuan XB (2005) Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434:894–898

    Article  PubMed  CAS  Google Scholar 

  26. Mandeville JT, Ghosh RN, Maxfield FR (1995) Intracellular calcium levels correlate with speed and persistent forward motion in migrating neutrophils. Biophys J 68:1207–1217

    Article  PubMed  CAS  Google Scholar 

  27. Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185

    Article  PubMed  CAS  Google Scholar 

  28. Munevar S, Wang YL, Dembo M (2004) Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry. J Cell Sci 117:85–92

    Article  PubMed  CAS  Google Scholar 

  29. Oberleithner H, Westphale HJ, Gassner B (1991) Alkaline stress transforms Madin–Darby canine kidney cells. Pflugers Arch 419:418–420

    Article  PubMed  CAS  Google Scholar 

  30. Pedersen SF, Nilius B (2007) Transient receptor potential channels in mechanosensing and cell volume regulation. Methods Enzymol 428:183–207

    Article  PubMed  CAS  Google Scholar 

  31. Ponti A, Machacek M, Gupton SL, Waterman-Storer CM, Danuser G (2004) Two distinct actin networks drive the protrusion of migrating cells. Science 305:1782–1786

    Article  PubMed  CAS  Google Scholar 

  32. Rao JN, Platoshyn O, Golovina VA, Liu L, Zou T, Marasa BS, Turner DJ, Yuan JX, Wang JY (2006) TRPC1 functions as a store-operated Ca2+ channel in intestinal epithelial cells and regulates early mucosal restitution after wounding. Am J Physiol Gastrointest Liver Physiol 290:G782–G792

    Article  PubMed  CAS  Google Scholar 

  33. Raucher D, Sheetz MP (2000) Cell spreading and lamellipodial extension rate is regulated by membrane tension. J Cell Biol 148:127–136

    Article  PubMed  CAS  Google Scholar 

  34. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709

    Article  PubMed  CAS  Google Scholar 

  35. Schneider SW, Pagel P, Rotsch C, Danker T, Oberleithner H, Radmacher M, Schwab A (2000) Volume dynamics in migrating epithelial cells measured with atomic force microscopy. Pflugers Arch 439:297–303

    Article  PubMed  CAS  Google Scholar 

  36. Schwab A, Finsterwalder F, Kersting U, Danker T, Oberleithner H (1997) Intracellular Ca2+ distribution in migrating transformed epithelial cells. Pflugers Arch 434:70–76

    Article  PubMed  CAS  Google Scholar 

  37. Schwab A, Rossmann H, Klein M, Dieterich P, Gassner B, Neff C, Stock C, Seidler U (2005) Functional role of Na+-HCO3-cotransport in migration of transformed renal epithelial cells. J Physiol 568(Pt 2):445–458

    Article  PubMed  CAS  Google Scholar 

  38. Schwab A, Nechyporuk-Zloy V, Fabian A, Stock C (2007) Cells move when ions and water flow. Pflugers Arch 453:421–432

    Article  PubMed  CAS  Google Scholar 

  39. Sharif-Naeini R, Dedman A, Folgering JH, Duprat F, Patel A, Nilius B, Honore E (2008) TRP channels and mechanosensory transduction: insights into the arterial myogenic response. Pflugers Arch DOI 10.1007/s00424-007-0432-y

  40. Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A 103:16586–16591

    Article  PubMed  CAS  Google Scholar 

  41. Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, Baumgarten CM, Sachs F (2000) Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol 115:583–598

    Article  PubMed  CAS  Google Scholar 

  42. Wang GX, Poo MM (2005) Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 434:898–904

    Article  PubMed  CAS  Google Scholar 

  43. Wang Y, Shibasaki F, Mizuno K (2005) Calcium signal-induced cofilin dephosphorylation is mediated by slingshot via calcineurin. J Biol Chem 280:12683–12689

    Article  PubMed  CAS  Google Scholar 

  44. Waning J, Vriens J, Owsianik G, Stuwe L, Mally S, Fabian A, Frippiat C, Nilius B, Schwab A (2007) A novel function of capsaicin-sensitive TRPV1 channels: involvement in cell migration. Cell Calcium 42:17–25

    Article  PubMed  CAS  Google Scholar 

  45. Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci U S A 92:9652–9656

    Article  PubMed  CAS  Google Scholar 

  46. Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193–198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Michael Zhu from the Ohio State University for kindly providing us with a plasmid of the human HA-tagged TRPC1. This work was supported by a grant from the Rolf-Dierichs-Stiftung of the Medical Faculty of the University of Münster (grant number 193423) to A.F., by the IZKF Münster (grant number Schw2/030/08) and by the Deutsche Forschungsgemeinschaft (grant number Schw 407/9-3, 10-1) to A.S. B.N. was supported by a Human Frontiers Research Grant (RGP 32/2004), the Excellentiefinanciering (Flanders, EF/95/010), and the Interuniversity Poles of Attraction Program, Prime Minister’s Office IUAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fabian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

424_2008_515_MOESM1_ESM.mov

Video 1 Suppression of TRPC1 leads to loss of cellular polarity and impaired migration. Phase-contrast time lapse video microscopy of representative MDCK-F cells migrating on fibronectin for 3 h. Frames were collected in 1-min intervals and are displayed at a rate of 30 frames per second. Cells with knockdown of TRPC1 are shown in the left panel and hTRPC1-HA-overexpressing cells in the right panel. TRPC1 knockdown leads to a loss of cell polarity. A clear front-rear axis can no longer be recognized. Multiple broad lamellipodia are protruding into different directions simultaneously. In contrast, hTRPC1-HA-overexpressing cells are highly polarized and show a normal and efficient migration. As movies are shown in the same magnification, it is obvious that the projected cell surface of TRPC1-depleted cells has at least doubled. Scale bar: 50 µm. (MOV 2.78 MB)

Table S1 Nucleotide sequences of oligonucleotides used for RNA interference (DOC 37 KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabian, A., Fortmann, T., Dieterich, P. et al. TRPC1 channels regulate directionality of migrating cells. Pflugers Arch - Eur J Physiol 457, 475–484 (2008). https://doi.org/10.1007/s00424-008-0515-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0515-4

Keywords

Navigation