Skip to main content

Advertisement

Log in

The combination of TRPM8 and TRPA1 expression causes an invasive phenotype in lung cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

Our recent studies have shown that hypothermic microenvironment promotes tumor progression and that the molecular sensors for cold are the transient receptor potential (TRP) channels TRPM8 and TRPA1. To evaluate the contribution of TRPM8 and TRPA1 to cancer malignancy, we screened cell subpopulations from Lewis lung cancer (LLC) using limiting dilutions and Western blotting. We identified that LLC-1 cells express 3-fold more TRPM8 than TRPA1, LLC-2 cells express TRPM8 at levels similar to TRPA1, and LLC-3 cells express TRPM8 at one-third the level of TRPA1. LLC-2 cells showed greater adhesion, migration, invasiveness and resistance to hypothermia than LLC-1 and LLC-3 cells, although LLC-2 cells had a longer doubling time. TRPM8 or TRPA1 knockdown using siRNA promoted cell proliferation and decreased adhesion and invasiveness in LLC-2 cells. When assessed for UCP2 staining, LLC-1 cells showed increased staining compared to LLC-2 cells, both of which had more UCP2-positive cells than the LLC-3 subpopulation. In an autophagy assay, hypothermia induced substantially less autophagy in LLC-1 cells than in LLC-2 cells, which displayed decreased autophagy compared to LLC-3 cells. Moreover, mice injected with LLC-2 cells had significantly more spontaneous and experimental lung metastases and a shorter overall survival time than mice injected with LLC-1 or LLC-3 cells. Importantly, LLC-2 cells were also more resistant to activated spleen CTL and the chemotherapeutic drug doxorubicin than LLC-1 and LLC-3 cells in vitro. Collectively, our data suggest that TRPM8 induces UCP2 to trigger metabolic transformation, whereas TRPA1 induces autophagy during adverse conditions, and the combination of both genes contributes directly to an invasive phenotype in lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Babes A, Ciobanu AC, Neacsu C, Babes RM. TRPM8, a sensor for mild cooling in mammalian sensory nerve endings. Curr Pharm Biotechnol. 2011;12:78–88.

    Article  CAS  PubMed  Google Scholar 

  2. El Karim IA, Linden GJ, Curtis TM, About I, McGahon MK, Irwin CR, et al. Human dental pulp fibroblasts express the "cold-sensing" transient receptor potential channels TRPA1 and TRPM8. J Endod. 2011;37:473–78.

    Article  PubMed  Google Scholar 

  3. Bharate SS, Bharate SB. Modulation of thermoreceptor TRPM8 by cooling compounds. ACS Chem Neurosci. 2012;3:248–67.

    Article  CAS  PubMed  Google Scholar 

  4. Nilius B, Appendino G, Owsianik G. The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch. 2012;464:425–58.

    Article  CAS  PubMed  Google Scholar 

  5. Valero ML. Mello de Queiroz F, Stühmer W, Viana F, Pardo LA. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells. PLoS One. 2012;7:e51825.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Zhu G, Wang X, Yang Z, Cao H, Meng Z, Wang Y, et al. Effects of TRPM8 on the proliferation and angiogenesis of prostate cancer PC-3 cells in vivo. Oncol Lett. 2011;2:1213–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Okamoto Y, Ohkubo T, Ikebe T, Yamazaki J. Blockade of TRPM8 activity reduces the invasion potential of oral squamous carcinoma cell lines. Int J Oncol. 2012;40:1431–40.

    CAS  PubMed  Google Scholar 

  8. Dhennin-Duthille I, Gautier M, Faouzi M, Guilbert A, Brevet M, Vaudry D, et al. High expression of transient receptor potential channels in human breast cancer epithelial cells and tissues: correlation with pathological parameters. Cell Physiol Biochem. 2011;28:813–22.

    Article  CAS  PubMed  Google Scholar 

  9. Du GJ, Liu YH, Li JH, Liu WJ, Wang YY, Hong L. Hypothermic microenvironment plays a key role in tumor immune subversion. Int Immunopharmacol. 2013;17:245–53.

    Article  CAS  PubMed  Google Scholar 

  10. Caspani O, Zurborg S, Labuz D, Heppenstall PA. The contribution of TRPM8 and TRPA1 channels to cold allodynia and neuropathic pain. PLoS One. 2009;4:e7383.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Lehen'kyi V, Prevarskaya N. Oncogenic TRP channels. Adv Exp Med Biol. 2011;704:929–45.

    Article  PubMed  Google Scholar 

  12. Kamarajugadda S, Stemboroski L, Cai Q, Simpson NE, Nayak S, Tan M, et al. Glucose oxidation modulates anoikis and tumor metastasis. Mol Cell Biol. 2012;32:1893–907.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Mailloux RJ, Adjeitey CN, Harper ME. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents. PLoS One. 2010;5:e13289.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W, et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res. 2011;17(4):654–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chia J, Yeo KP, Whisstock JC, Dunstone MA, Trapani JA, Voskoboinik I. Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer. Proc Natl Acad Sci U S A. 2009;106:9809–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kovacic P, Somanathan R. Recent developments in the mechanism of anticancer agents based on electron transfer, reactive oxygen species and oxidative stress. Anticancer Agents Med Chem. 2011;11:658–68.

    Article  CAS  PubMed  Google Scholar 

  17. Hoshida Y. Molecular signatures and prognosis of hepatocellular carcinoma. Minerva Gastroenterol Dietol. 2011;57:311–22.

    CAS  PubMed  Google Scholar 

  18. Ferrer-Montiel A, Fernández-Carvajal A, Planells-Cases R, Fernández-Ballester G, González-Ros JM, Messeguer A, et al. Advances in modulating thermosensory TRP channels. Expert Opin Ther Pat. 2012;22:999–1017.

    Article  CAS  PubMed  Google Scholar 

  19. Wrigley PJ, Jeong HJ, Vaughan CW. Primary afferents with TRPM8 and TRPA1 profiles target distinct subpopulations of rat superficial dorsal horn neurones. Br J Pharmacol. 2009;157:371–80.

    Article  CAS  PubMed  Google Scholar 

  20. Baffy G, Derdak Z, Robson SC. Mitochondrial recoupling: a novel therapeutic strategy for cancer? British J Cancer. 2011;105:469–74.

    Article  CAS  Google Scholar 

  21. Spano D, Zollo M. Tumor microenvironment: a main actor in the metastasis process. Clin Exp Metastasis. 2012;29:381–95.

    Article  CAS  PubMed  Google Scholar 

  22. Yuneva MO, Fan TW, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 2012;15:157–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Halliwell B. Oxidative stress and cancer: have we moved forward? Biochem J. 2007;401:1–11.

    Article  CAS  PubMed  Google Scholar 

  24. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic Biol Med. 2009;47:333–43.

    Article  CAS  PubMed  Google Scholar 

  25. Yoon YS, Lee JH, Hwang SC, Choi KS, Yoon G. TGF beta1 induces prolonged mitochondrial ROS generation through decreased complex IV activity with senescent arrest in Mv1Lu cells. Oncogene. 2005;24:1895–903.

    Article  CAS  PubMed  Google Scholar 

  26. Baffy G. Uncoupling protein-2 and cancer. Mitochondrion. 2010;10:243–52.

    Article  CAS  PubMed  Google Scholar 

  27. Collins P, Jones C, Choudhury S, Damelin L, Hodgson H. Increased expression of uncoupling protein 2 in HepG2 cells attenuates oxidative damage and apoptosis. Liver Int. 2005;25:880–7.

    Article  CAS  PubMed  Google Scholar 

  28. Derdak Z, Mark NM, Beldi G, Robson SC, Wands JR, Baffy G. The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Res. 2008;68:2813–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ohkouchi S, Block GJ, Katsha AM, Kanehira M, Ebina M, Kikuchi T, et al. Mesenchymal stromal cells protect cancer cells from ROS-induced apoptosis and enhance the Warburg effect by secreting STC1. Mol Ther. 2012;20:417–23.

    Article  CAS  PubMed  Google Scholar 

  30. Deng S, Yang Y, Han Y, Li X, Wang X, Li X, et al. UCP2 inhibits ROS-mediated apoptosis in A549 under hypoxic conditions. PLoS One. 2012;7:e30714.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Samudio I, Fiegl M, Andreeff M. Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Res. 2009;69:2163–6.

    Article  CAS  PubMed  Google Scholar 

  32. Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Tanowitz HB, Sotgia F, et al. Stromal–epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int J Biochem Cell Biol. 2011;43:1045–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J, et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle. 2010;9:3515–33.

    Article  CAS  PubMed  Google Scholar 

  34. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8:741–52.

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Wang M, MacLennan GT, Abdul-Karim FW, Eble JN, Jones TD, et al. Evidence for common clonal origin of multifocal lung cancers. J Natl Cancer Inst. 2009;101:560–70.

    Article  CAS  PubMed  Google Scholar 

  36. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature. 2009;457:102–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from National Natural Science Foundation of China (No. 81173094); Joint construction fund for Henan University from Henan Province and the Ministry of Education of China (No. SBGJ090704) and Young Core Instructor of Henan Province, China (No. 2010GGJS-025).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang-Jun Du or Yong-Jian Duan.

Additional information

Gang-Jun Du and Jia-Huan Li have contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, GJ., Li, JH., Liu, WJ. et al. The combination of TRPM8 and TRPA1 expression causes an invasive phenotype in lung cancer. Tumor Biol. 35, 1251–1261 (2014). https://doi.org/10.1007/s13277-013-1167-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1167-3

Key words

Navigation