Skip to main content

Advertisement

Log in

Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Chronic granulomatous disease (CGD) is an immunodeficiency caused by the lack of the superoxide-producing phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. However, CGD patients not only suffer from recurrent infections, but also present with inflammatory, non-infectious conditions. Among the latter, granulomas figure prominently, which gave the name to the disease, and colitis, which is frequent and leads to a substantial morbidity. In this paper, we systematically review the inflammatory lesions in different organs of CGD patients and compare them to observations in CGD mouse models. In addition to the more classical inflammatory lesions, CGD patients and their relatives have increased frequency of autoimmune diseases, and CGD mice are arthritis-prone. Possible mechanisms involved in CGD hyperinflammation include decreased degradation of phagocytosed material, redox-dependent termination of proinflammatory mediators and/or signaling, as well as redox-dependent cross-talk between phagocytes and lymphocytes (e.g. defective tryptophan catabolism). As a conclusion from this review, we propose the existence of ROShigh and ROSlow inflammatory responses, which are triggered as a function of the level of reactive oxygen species and have specific characteristics in terms of physiology and pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CGD:

Chronic granulomatous disease

ROS:

Reactive oxygen species

NADPH:

Nicotinamide adenine dinucleotide phosphate-oxidase

NOX:

NADPH oxidase

DUOX:

dual oxidase

OR:

Odds ratio

iNOS:

inducible nitric oxide synthase

MOG:

myelin oligodendrocyte glycoprotein

IQ:

intellectual quotient

SNP:

single nucleotide polymorphism

IDO:

indol 2,3 dioxidase

References

  1. Janeway C, Craig J, Davidson M et al (1954) Hypergammaglobulinemia associated with severe recurrent and chronic non-specific infection. Am J Dis Child 88:388–392

    Google Scholar 

  2. Berendes H, Bridges RA, Good RA (1957) A fatal granulomatosus of childhood: the clinical study of a new syndrome. Minn Med 40:309–312

    PubMed  CAS  Google Scholar 

  3. Quie PG, White JG, Holmes B et al (1967) In vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease of childhood. J Clin Invest 46:668–679

    PubMed  CAS  Google Scholar 

  4. Holmes B, Page AR, Good RA (1967) Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest 46:1422–1432

    PubMed  CAS  Google Scholar 

  5. Quie PG, Kaplan EL, Page AR et al (1968) Defective polymorphonuclear-leukocyte function and chronic granulomatous disease in two female children. N Engl J Med 278:976–980

    PubMed  CAS  Google Scholar 

  6. Abadie V, Badell E, Douillard P et al (2005) Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood 106:1843–1850

    Article  PubMed  CAS  Google Scholar 

  7. Holmes B, Park BH, Malawista SE et al (1970) Chronic granulomatous disease in females. N Engl J Med 283:217–221

    PubMed  CAS  Google Scholar 

  8. Clark R, Malech H, Galin J et al (1989) Genetic variants of chronic granulomatous disease: prevalence of deficiencies of two cytosolic components of the NADPH oxidase system. N Engl J Med 321:647–652

    PubMed  CAS  Google Scholar 

  9. Volpp B, Nauseef W, Clack R (1988) Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease. Science 242:295–1296

    Article  Google Scholar 

  10. Dinauer MC, Orkin SH, Brown R et al (1987) The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature 327:717–720

    Article  PubMed  CAS  Google Scholar 

  11. Parkos C, Allen R, Cochrane C et al (1987) Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest 80:732–741

    Article  PubMed  CAS  Google Scholar 

  12. Segal BH, Leto TL, Gallin JI et al (2000) Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 79:170–200

    Article  CAS  Google Scholar 

  13. Martire B, Rondelli R, Soresina A et al (2008) Clinical features, long-term follow-up and outcome of a large cohort of patients with Chronic Granulomatous Disease: An Italian multicenter study. Clin Immunol 126(2):155–164 (Feb)

    Google Scholar 

  14. Khanna G, Kao SC, Kirby P et al (2005) Imaging of chronic granulomatous disease in children. Radiographics 25:1183–1195

    Article  PubMed  Google Scholar 

  15. Winkelstein JA, Marino MC, Johnston RB Jr et al (2000) Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79:155–169

    Article  CAS  Google Scholar 

  16. Lee BW, Yap HK (1994) Polyarthritis resembling juvenile rheumatoid arthritis in a girl with chronic granulomatous disease. Arthritis Rheum 37:773–776

    Article  PubMed  CAS  Google Scholar 

  17. Sloan J, Cameron C, Maxwell R et al (1996) Colitis complicating chronic granulomatous disease: a clinicopathological case report. Gut 38:619–622

    Article  PubMed  CAS  Google Scholar 

  18. Lambeth JD (2007) Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 43:332–347

    Article  PubMed  CAS  Google Scholar 

  19. Schäppi MG, Smith VV, Goldblatt D et al (2001) Colitis in chronic granulomatous disease. Arch Dis Child 84:147–151

    Article  PubMed  Google Scholar 

  20. Bedard K, Krause KH (2007) The NOX Family of ROS-Generating NADPH Oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  PubMed  CAS  Google Scholar 

  21. Finn A, Hadzic N, Morgan G et al (1990) Prognosis of chronic granulomatous disease. Arch Dis Child 65:942–945

    PubMed  CAS  Google Scholar 

  22. Stasia MJ, Li XJ (2008) Genetics and immunopathology of chronic granulomatous disease. Seminars in Immunopathology 30 (in press)

  23. Baehner R, Kunkel L, Monaco A et al (1986) DNA linkage analysis of X chromosome-linked chronic granulomatous disease. Proc Natl Acad Sci U S A 83:3398–3401

    Article  PubMed  CAS  Google Scholar 

  24. Nunoi H, Rotrosen D, Gallin J et al (1988) Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science 242:1298–1301

    Article  PubMed  CAS  Google Scholar 

  25. Meischl C, Roos D (1998) The molecular basis of chronic granulomatous disease. Springer Semin Immunopathol 19:417–434

    Article  PubMed  CAS  Google Scholar 

  26. Roos D, de Boer M, Kuribayashi F et al (1996) Mutations in the X-linked and autosomal recessive forms of chronic granulomatous disease. Blood 87:1663–1681

    PubMed  CAS  Google Scholar 

  27. Francke U, Ochs HD, Darras BT et al (1990) Origin of mutations in two families with X-linked chronic granulomatous disease. Blood 76:602–606

    PubMed  CAS  Google Scholar 

  28. Williams DA, Tao W, Yang F et al (2000) Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood 96:1646–1654

    PubMed  CAS  Google Scholar 

  29. Ambruso DR, Knall C, Abell AN et al (2000) Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci U S A 97:4654–4659

    Article  PubMed  CAS  Google Scholar 

  30. Windhorst DB, Page AR, Holmes B et al (1968) The pattern of genetic transmission of the leukocyte defect in fatal granulomatous disease of childhood. J Clin Invest 47:1026–1034

    PubMed  CAS  Google Scholar 

  31. Migeon BR (2007) Why females are mosaics, x-chromosome inactivation, and sex differences in disease. Gender Medicine 4:97–105

    Article  PubMed  Google Scholar 

  32. Thompson EN, Soothill JF (1970) Chronic granulomatous disease: quantitative clinicopathological relationships. Arch Dis Child 45:24–32

    PubMed  CAS  Google Scholar 

  33. Curnutte JT, Hopkins PJ, Kuhl W et al (1992) Studying X inactivation. Lancet 339:749

    Article  PubMed  CAS  Google Scholar 

  34. Rosen–Wolff A, Soldan W, Heyne K et al (2001) Increased susceptibility of a carrier of X-linked chronic granulomatous disease (CGD) to Aspergillus fumigatus infection associated with age-related skewing of lyonization. Ann Hematol 80:113–115

    Article  PubMed  CAS  Google Scholar 

  35. Martin–Villa JM, Corell A, Ramos-Amador JT et al (1999) Higher incidence of autoantibodies in X-linked chronic granulomatous disease carriers: random X-chromosome inactivation may be related to autoimmunity. Autoimmunity 31:261–264

    PubMed  CAS  Google Scholar 

  36. Foster C, Lehrnbecher T, Mol F et al (1998) Host defense molecule polymorphisms influence the risk for immune-mediated complications in chronic granulomatous disease. J Clin Invest 12:2146–2155

    Article  Google Scholar 

  37. Johnston RB Jr (2001) Clinical aspects of chronic granulomatous disease. Curr Opin Hematol 8:17–22

    Article  PubMed  Google Scholar 

  38. Marciano BE, Rosenzweig SD, Kleiner DE et al (2004) Gastrointestinal involvement in chronic granulomatous disease. Pediatrics 114:462–468

    Article  PubMed  Google Scholar 

  39. Schäppi M, Smith V, Goldblatt D et al (1999) Colitis is common in CGD. J Pediatr Gastroenterol Nutr 28:569

    Article  Google Scholar 

  40. Chin T, Stiehm E, Falloon J et al (1987) Corticosteroids in treatment of obstructive lesions of chronic granulomatous disease. J Pediatr 111(3):349–350

    Article  PubMed  CAS  Google Scholar 

  41. Levine S, Smith VV, Malone M et al (2005) Histopathological features of chronic granulomatous disease (CGD) in childhood. Histopathology 47:508–516

    Article  PubMed  CAS  Google Scholar 

  42. Danziger RN, Goren AT, Becker J et al (1993) Outpatient management with oral corticosteroid therapy for obstructive conditions in chronic granulomatous disease. J Pediatr 122:303–305

    Article  PubMed  CAS  Google Scholar 

  43. Barese CN, Podesta M, Litvak E et al (2004) Recurrent eosinophilic cystitis in a child with chronic granulomatous disease. J Pediatr Hematol Oncol 26:209–212

    Article  PubMed  Google Scholar 

  44. Stopyrowa J, Fyderek K, Sikorska B et al (1989) Chronic granulomatous disease of childhood: gastric manifestation and response to salazosulfapyridine therapy. Eur J Pediatr 149:28–30

    Article  PubMed  CAS  Google Scholar 

  45. Rosh JR, Tang HB, Mayer L et al (1995) Treatment of intractable gastrointestinal manifestations of chronic granulomatous disease with cyclosporine. J Pediatr 126:143–145

    Article  PubMed  CAS  Google Scholar 

  46. Barton L, Moussa S, Villar R et al (1998) Gastrointestinal complications of chronic granulomatous disease: case report and literature review. Clin Pediatr 37(4):231–236

    Article  CAS  Google Scholar 

  47. Morgenstern DE, Gifford MA, Li LL et al (1997) Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus. J Exp Med 185:207–218

    Article  PubMed  CAS  Google Scholar 

  48. Petersen JE, Hiran TS, Goebel WS et al (2002) Enhanced cutaneous inflammatory reactions to Aspergillus fumigatus in a murine model of chronic granulomatous disease. J Invest Dermatol 118:424–429

    Article  PubMed  CAS  Google Scholar 

  49. Schäppi M, Deffert C, Fiette L et al (2008) Branched fungal beta-glucan causes hyperinflammation and necrosis in phagocyte NADPH oxidase-deficient mice. J Pathol 214(4):434–444 (Mar)

    Google Scholar 

  50. Schäppi MG, Klein NJ, Lindley KJ et al (2003) The nature of colitis in chronic granulomatous disease. J Pediatr Gastroenterol Nutr 36:623–631

    Article  PubMed  Google Scholar 

  51. Ament M, Ochs H (1973) Gastrointestinal manifestations of chronic granulomatous disease. N Engl J Med 288:382–387

    PubMed  CAS  Google Scholar 

  52. Griscom NT, Kirkpatrick JA Jr, Girdany BR et al (1974) Gastric antral narrowing in chronic granulomatous disease of childhood. Pediatrics 54:456–460

    PubMed  CAS  Google Scholar 

  53. Huang A, Abbasakoor F, Vaizey CJ (2006) Gastrointestinal manifestations of chronic granulomatous disease. Colorectal Dis 8:637–644

    Article  PubMed  CAS  Google Scholar 

  54. Dickerman JD, Colletti RB, Tampas JP (1986) Gastric outlet obstruction in chronic granulomatous disease of childhood. Am J Dis Child 140:567–570

    PubMed  CAS  Google Scholar 

  55. Weening R, Adriaansz L, Weemaes C et al (1985) Clinical differences in chronic granulomatous disease in patients with cytochrome b-negative or cytochrome b-positive neutrophils. J Pediatr 107:102–104

    Article  PubMed  CAS  Google Scholar 

  56. Schäppi M, Smith V, Rampling D et al (2000) Is severity of colitis in chronic granulomatous disease determined by genotype? J Pediatr Gastroenterol Nutr 31:S82

    Google Scholar 

  57. Mitomi H, Mikami T, Takahashi H et al (1999) Colitis in chronic granulomatous disease resembling Crohn's disease: comparative analysis of CD68-positive cells between two disease entities. Dig Dis Sci 44:452–456

    Article  PubMed  CAS  Google Scholar 

  58. Isaacs D, Wright V, Shaw D et al (1985) Chronic granulomatous disease mimicking Crohn's disease. J Pediatr Gastroenterol Nutr 4:498–501

    Article  PubMed  CAS  Google Scholar 

  59. Landing BH, Shirkey HS (1957) A syndrome of recurrent infection and infiltration of viscera by pigmented lipid histiocytes. Pediatrics 20:431–438

    PubMed  CAS  Google Scholar 

  60. Ament M (1974) Intestinal granulomatosis in chronic granulomatous disease and in Crohn's disease. N Engl J Med 290:228

    Google Scholar 

  61. Hoare S, Walsh JE, Eastham E et al (1997) Abnormal technetium labelled white cell scan in the colitis of chronic granulomatous disease. Arch Dis Child 77:50–51

    PubMed  CAS  Google Scholar 

  62. Mulholland MW, Delaney JP, Simmons RL (1983) Gastrointestinal complications of chronic granulomatous disease: surgical implications. Surgery 94:569–575

    PubMed  CAS  Google Scholar 

  63. Quie P, Belani K (1987) Corticosteroids for chronic granulomatous disease. J Pediatr 111(3):393–394

    Article  PubMed  CAS  Google Scholar 

  64. Myrup B, Valerius NH, Mortensen PB (1998) Treatment of enteritis in chronic granulomatous disease with granulocyte colony stimulating factor. Gut 42:127–130

    PubMed  CAS  Google Scholar 

  65. De Ugarte DA, Roberts RL, Lerdluedeeporn P et al (2002) Treatment of chronic wounds by local delivery of granulocyte-macrophage colony-stimulating factor in patients with neutrophil dysfunction. Pediatr Surg Int 18:517–520

    Article  PubMed  Google Scholar 

  66. Arlet JB, Aouba A, Suarez F et al (2008) Efficiency of hydroxychloroquine in the treatment of granulomatous complications in chronic granulomatous disease. Eur J Gastroenterol Hepatol 20:142–144

    PubMed  CAS  Google Scholar 

  67. Johnson FE, Humbert JR, Kuzela DC et al (1975) Gastric outlet obstruction due to X-linked chronic granulomatous disease. Surgery 78:217–223

    PubMed  CAS  Google Scholar 

  68. Wysocki GP, Brooke RI (1978) Oral manifestations of chronic granulomatous disease. Oral Surg Oral Med Oral Pathol 46:815–819

    Article  PubMed  CAS  Google Scholar 

  69. Markowitz J, Aronon E, Rausen A et al (1982) Progressive esophageal dysfunction in chronic granulomatous disease. J Pediatr Gastroenterol Nutr 1:145–149

    PubMed  CAS  Google Scholar 

  70. Renner WR, Johnson JF, Lichtenstein JE et al (1991) Esophageal inflammation and stricture: complication of chronic granulomatous disease of childhood. Radiology 178:189–191

    PubMed  CAS  Google Scholar 

  71. Grossniklaus H, Frank K, Jacobs G (1988) Chorioretinal lesions in chronic granulomatous disease of childhood. Clinicopathologic correlations. Retina 8:270–274

    Article  PubMed  CAS  Google Scholar 

  72. Walther MM, Malech H, Berman A et al (1992) The urological manifestations of chronic granulomatous disease. J Urol 147:1314–1318

    PubMed  CAS  Google Scholar 

  73. Aliabadi H, Gonzalez R, Quie PG (1989) Urinary tract disorders in patients with chronic granulomatous disease. N Engl J Med 321:706–708

    PubMed  CAS  Google Scholar 

  74. Redman JF, Parham DM (2002) Extensive inflammatory eosinophilic bladder tumors in children: experience with three cases. South Med J 95:1050–1052

    PubMed  Google Scholar 

  75. Kelleher D, Bloomfield FJ, Lenehan T et al (1986) Chronic granulomatous disease presenting as an oculomucocutaneous syndrome mimicking Behcet's syndrome. Postgrad Med J 62:489–491

    PubMed  CAS  Google Scholar 

  76. Kontras SB, Bodenbender JG, McClave CR et al (1971) Interstitial cystitis in chronic granulomatous disease. J Urol 105:575–578

    PubMed  CAS  Google Scholar 

  77. Forbes GS, Hartman GW, Burke EC et al (1976) Genitourinary involvement in chronic granulomatous disease of childhood. AJR Am J Roentgenol 127:683–686

    PubMed  CAS  Google Scholar 

  78. Casale AJ, Balcom AH, Wells RG et al (1989) Bilateral complete ureteral obstruction and renal insufficiency secondary to granulomatous disease. J Urol 142:812–814

    PubMed  CAS  Google Scholar 

  79. Bauer SB, Kogan SJ (1991) Vesical manifestations of chronic granulomatous disease in children. Its relation to eosinophilic cystitis. Urology 37:463–466

    Article  PubMed  CAS  Google Scholar 

  80. Pao M, Wiggs EA, Anastacio MM et al (2004) Cognitive function in patients with chronic granulomatous disease: a preliminary report. Psychosomatics 45:230–234

    Article  PubMed  Google Scholar 

  81. Dringen R (2005) Oxidative and antioxidative potential of brain microglial cells. Antioxid Redox Signal 7:1223–1233

    Article  PubMed  CAS  Google Scholar 

  82. Tejada-Simon MV, Serrano F, Villasana LE et al (2005) Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci 29:97–106

    Article  PubMed  CAS  Google Scholar 

  83. Qin B, Cartier L, Dubois–Dauphin M et al (2006) A key role for the microglial NADPH oxidase in APP-dependent killing of neurons. Neurobiol Aging 27:1577–1587

    Article  PubMed  CAS  Google Scholar 

  84. Krause K-H (2007) Aging: a revisited theory based on free radicals generated by NOX family NADPH oxidases. Exp Gerontol 42:256–262

    Article  PubMed  CAS  Google Scholar 

  85. Riggs JE, Quaglieri FC, Schochet SS Jr et al (1989) Pigmented, lipid-laden histiocytes in the central nervous system in chronic granulomatous disease of childhood. J Child Neurol 4:61–63

    Article  PubMed  CAS  Google Scholar 

  86. Hadfield MG, Ghatak NR, Laine FJ et al (1991) Brain lesions in chronic granulomatous disease. Acta Neuropathol 81:467–470

    Article  PubMed  CAS  Google Scholar 

  87. Dohil M, Prendiville JS, Crawford RI et al (1997) Cutaneous manifestations of chronic granulomatous disease. A report of four cases and review of the literature. J Am Acad Dermatol 36:899–907

    Article  PubMed  CAS  Google Scholar 

  88. Eckert JW, Abramson SL, Starke J et al (1995) The surgical implications of chronic granulomatous disease. Am J Surg 169:320–323

    Article  PubMed  CAS  Google Scholar 

  89. Brandrup F, Koch C, Petri M et al (1981) Discoid lupus erythematosus-like lesions and stomatitis in female carriers of X-linked chronic granulomatous disease. Br J Dermatol 104:495–505

    Article  PubMed  CAS  Google Scholar 

  90. Lindskov R, Munkvad JM, Valerius NH (1983) Discoid lupus erythematosus and carrier status of X-linked chronic granulomatous disease. Dermatologica 167:231–233

    Article  PubMed  CAS  Google Scholar 

  91. Yeaman GR, Froebel K, Galea G et al (1992) Discoid lupus erythematosus in an X-linked cytochrome-positive carrier of chronic granulomatous disease. Br J Dermatol 126:60–65

    Article  PubMed  CAS  Google Scholar 

  92. Lovas JG, Issekutz A, Walsh N et al (1995) Lupus erythematosus-like oral mucosal and skin lesions in a carrier of chronic granulomatous disease. Chronic granulomatous disease carrier genodermatosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 80:78–82

    Article  CAS  Google Scholar 

  93. Cordoba-Guijarro S, Feal C, Dauden E et al (2000) Lupus erythematosus-like lesions in a carrier of X-linked chronic granulomatous disease. J Eur Acad Dermatol Venereol 14:409–411

    Article  PubMed  CAS  Google Scholar 

  94. Rupec RA, Petropoulou T, Belohradsky BH et al (2000) Lupus erythematosus tumidus and chronic discoid lupus erythematosus in carriers of X-linked chronic granulomatous disease. Eur J Dermatol 10:184–189

    PubMed  CAS  Google Scholar 

  95. Cale CM, Morton L, Goldblatt D (2007) Cutaneous and other lupus-like symptoms in carriers of X-linked chronic granulomatous disease: incidence and autoimmune serology. Clin Exp Immunol 148:79–84

    PubMed  CAS  Google Scholar 

  96. Kragballe K, Borregaard N, Brandrup F et al (1981) Relation of monocyte and neutrophil oxidative metabolism to skin and oral lesions in carriers of chronic granulomatous disease. Clin Exp Immunol 43:390–398

    PubMed  CAS  Google Scholar 

  97. Hitchon CA, El–Gabalawy HS (2004) Oxidation in rheumatoid arthritis. Arthritis Res Ther 6:265–278

    Article  PubMed  Google Scholar 

  98. El Benna J, Hayem G, Dang PM et al (2002) NADPH oxidase priming and p47phox phosphorylation in neutrophils from synovial fluid of patients with rheumatoid arthritis and spondylarthropathy. Inflammation 26:273–278

    Article  PubMed  Google Scholar 

  99. Eggleton P, Wang L, Penhallow J et al (1995) Differences in oxidative response of subpopulations of neutrophils from healthy subjects and patients with rheumatoid arthritis. Ann Rheum Dis 54:916–923

    PubMed  CAS  Google Scholar 

  100. Ostrakhovitch EA, Afanas'ev IB (2001) Oxidative stress in rheumatoid arthritis leukocytes: suppression by rutin and other antioxidants and chelators. Biochem Pharmacol 62:743–746

    Article  PubMed  CAS  Google Scholar 

  101. Olsson LM, Lindqvist AK, Kallberg H et al (2007) A case-control study of rheumatoid arthritis identifies an associated single nucleotide polymorphism in the NCF4 gene, supporting a role for the NADPH-oxidase complex in autoimmunity. Arthritis Res Ther 9:R98

    Article  PubMed  CAS  Google Scholar 

  102. Bodur H, Ozoran K, Colpan A et al (2003) Arthritis and osteomyelitis due to Aspergillus fumigatus: a 17 years old boy with chronic granulomatous disease. Ann Clin Microbiol Antimicrob 2:2

    Article  PubMed  Google Scholar 

  103. Dotis J, Panagopoulou P, Filioti J et al (2003) Femoral osteomyelitis due to Aspergillus nidulans in a patient with chronic granulomatous disease. Infection 31:121–124

    Article  PubMed  CAS  Google Scholar 

  104. Goldblatt D, Butcher J, Thrasher AJ et al (1999) Chorioretinal lesions in patients and carriers of chronic granulomatous disease. J Pediatr 134:780–783

    Article  PubMed  CAS  Google Scholar 

  105. Martyn LJ, Lischner HW, Pileggi AJ et al (1971) Chorioretinal lesions in familial chronic granulomatous disease of childhood. Trans Am Ophthalmol Soc 69:84–112

    PubMed  CAS  Google Scholar 

  106. Matsuura T, Sonoda K–H, Ohga S et al (2006) A case of chronic recurrent uveitis associated with chronic granulomatous disease. Jpn J Ophthalmol 50:287–289

    Article  PubMed  Google Scholar 

  107. Leroux K, Mallon E, Ayliffe WH (2004) Chronic granulomatous disease and peripheral ulcerative keratitis: a rare case of recurrent external ocular disease. Bull Soc Belge Ophtalmol 293:47–53

    Google Scholar 

  108. Pollock J, Williams D, Gifford M et al (1995) Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet 9:202–209

    Article  PubMed  CAS  Google Scholar 

  109. Jackson SH, Gallin JI, Holland SM (1995) The p47phox mouse knock-out model of chronic granulomatous disease. J Exp Med 182:751–758

    Article  PubMed  CAS  Google Scholar 

  110. Ellson CD, Davidson K, Ferguson GJ et al (2006) Neutrophils from p40phox–/– mice exhibit severe defects in NADPH oxidase regulation and oxidant-dependent bacterial killing. J Exp Med 203:1927–1937

    Article  PubMed  CAS  Google Scholar 

  111. Olofsson P, Holmberg J, Tordsson J et al (2003) Positional identification of Ncf1 as a gene that regulates arthritis severity in rats. Nat Genet 33:25–32

    Article  PubMed  CAS  Google Scholar 

  112. Huang CK, Zhan L, Hannigan MO et al (2000) P47(phox)-deficient NADPH oxidase defect in neutrophils of diabetic mouse strains, C57BL/6J-m db/db and db/+. J Leukoc Biol 67:210–215

    PubMed  CAS  Google Scholar 

  113. Bingel SA (2002) Pathology of a mouse model of x-linked chronic granulomatous disease. Contemp Top Lab Anim Sci 41:33–38

    PubMed  CAS  Google Scholar 

  114. Roberts AW, Kim C, Zhen L et al (1999) Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10:183–196

    Article  PubMed  CAS  Google Scholar 

  115. Li S, Yamauchi A, Marchal CC et al (2002) Chemoattractant-stimulated Rac activation in wild-type and Rac2-deficient murine neutrophils: preferential activation of Rac2 and Rac2 gene dosage effect on neutrophil functions. J Immunol 169:5043–5051

    PubMed  Google Scholar 

  116. Abdel–Latif D, Steward M, Macdonald DL et al (2004) Rac2 is critical for neutrophil primary granule exocytosis. Blood 104:832–839

    Article  PubMed  CAS  Google Scholar 

  117. Zhang X, Glogauer M, Zhu F et al (2005) Innate immunity and arthritis: neutrophil Rac and toll-like receptor 4 expression define outcomes in infection-triggered arthritis. Arthritis Rheum 52:1297–1304

    Article  PubMed  CAS  Google Scholar 

  118. Blanchard TG, Yu F, Hsieh CL et al (2003) Severe inflammation and reduced bacteria load in murine helicobacter infection caused by lack of phagocyte oxidase activity. J Infect Dis 187:1609–1615

    Article  PubMed  CAS  Google Scholar 

  119. Keenan JI, Peterson Ii RA, Hampton MB (2005) NADPH oxidase involvement in the pathology of Helicobacter pylori infection. Free Radic Biol Med 38:1188–1196

    Article  PubMed  CAS  Google Scholar 

  120. Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005–1015

    PubMed  CAS  Google Scholar 

  121. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  PubMed  CAS  Google Scholar 

  122. Zekry D, Epperson TK, Krause KH (2003) A role for NOX NADPH oxidases in Alzheimer's disease and other types of dementia? IUBMB Life 55:307–313

    Article  PubMed  CAS  Google Scholar 

  123. van der Veen RC, Dietlin TA, Hofman FM et al (2000) Superoxide prevents nitric oxide-mediated suppression of helper T lymphocytes: decreased autoimmune encephalomyelitis in nicotinamide adenine dinucleotide phosphate oxidase knockout mice. J Immunol 164:5177–5183

    PubMed  Google Scholar 

  124. Hultqvist M, Olofsson P, Holmberg J et al (2004) Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene. PNAS 101:12646–12651

    Article  PubMed  CAS  Google Scholar 

  125. Kishida KT, Hoeffer CA, Hu D et al (2006) Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol Cell Biol 26:5908–5920

    Article  PubMed  CAS  Google Scholar 

  126. Chiriac MT, Roesler J, Sindrilaru A et al (2007) NADPH oxidase is required for neutrophil–dependent autoantibody-induced tissue damage. J Pathol 212:56–65

    Article  PubMed  CAS  Google Scholar 

  127. Komatsu J, Koyama H, Maeda N et al (2006) Earlier onset of neutrophil-mediated inflammation in the ultraviolet-exposed skin of mice deficient in myeloperoxidase and NADPH oxidase. Inflamm Res 55:200–206

    Article  PubMed  CAS  Google Scholar 

  128. Fantone JC, Ward PA (1985) Polymorphonuclear leukocyte-mediated cell and tissue injury: oxygen metabolites and their relations to human disease. Hum Pathol 16:973–978

    PubMed  CAS  Google Scholar 

  129. Hadjigogos K (2003) The role of free radicals in the pathogenesis of rheumatoid arthritis. Panminerva Med 45:7–13

    PubMed  CAS  Google Scholar 

  130. Keystone EC, Schorlemmer HU, Pope C et al (1977) Zymosan-induced arthritis: a model of chronic proliferative arthritis following activation of the alternative pathway of complement. Arthritis Rheum 20:1396–1401

    Article  PubMed  CAS  Google Scholar 

  131. Schalkwijk J, van den Berg WB, van de Putte LB et al (1985) Cationization of catalase, peroxidase, and superoxide dismutase. Effect of improved intraarticular retention on experimental arthritis in mice. J Clin Invest 76:198–205

    Article  PubMed  CAS  Google Scholar 

  132. van de Loo FA, Joosten LA, van Lent PL et al (1995) Role of interleukin-1, tumor necrosis factor alpha, and interleukin–6 in cartilage proteoglycan metabolism and destruction. Effect of in situ blocking in murine antigen- and zymosan-induced arthritis. Arthritis Rheum 38:164–172

    Article  PubMed  Google Scholar 

  133. van de Loo FA, Arntz OJ, van Enckevort FH et al (1998) Reduced cartilage proteoglycan loss during zymosan-induced gonarthritis in NOS2-deficient mice and in anti-interleukin-1-treated wild-type mice with unabated joint inflammation. Arthritis Rheum 41:634–646

    Article  PubMed  Google Scholar 

  134. Weinberger A, Halpern M, Zahalka MA et al (2003) Placental immunomodulator ferritin, a novel immunoregulator, suppresses experimental arthritis. Arthritis Rheum 48:846–853

    Article  PubMed  CAS  Google Scholar 

  135. Miesel R, Kroger H, Kurpisz M et al (1995) Induction of arthritis in mice and rats by potassium peroxochromate and assessment of disease activity by whole blood chemiluminescence and 99mpertechnetate-imaging. Free Radic Res 23:213–227

    Article  PubMed  CAS  Google Scholar 

  136. Hougee S, Hartog A, Sanders A et al (2006) Oral administration of the NADPH-oxidase inhibitor apocynin partially restores diminished cartilage proteoglycan synthesis and reduces inflammation in mice. Eur J Pharmacol 531:264–269

    Article  PubMed  CAS  Google Scholar 

  137. van de Loo FAJ, Bennink MB, Arntz OJ et al (2003) Deficiency of NADPH oxidase components p47phox and gp91phox caused granulomatous synovitis and increased connective tissue destruction in experimental arthritis models. Am J Pathol 163:1525–1537

    PubMed  Google Scholar 

  138. Gelderman KA, Hultqvist M, Pizzolla A et al (2007) Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. J Clin Invest 117:3020–3028

    Article  PubMed  CAS  Google Scholar 

  139. Hultqvist M, Olofsson P, Gelderman KA et al (2006) A new arthritis therapy with oxidative burst inducers. PLoS Med 3:e348

    Article  PubMed  CAS  Google Scholar 

  140. van Lent P, Nabbe K, Blom A et al (2005) NADPH-oxidase-driven oxygen radical production determines chondrocyte death and partly regulates metalloproteinase-mediated cartilage matrix degradation during interferon-gamma-stimulated immune complex arthritis. Arthritis Res Ther 7:R885–R895

    Article  PubMed  CAS  Google Scholar 

  141. Yang YH, Campbell JS (1964) Crystalline excrements in bronchitis and cholecystitis of mice. Am J Pathol 45:337–345

    PubMed  CAS  Google Scholar 

  142. Murray AB, Luz A (1990) Acidophilic macrophage pneumonia in laboratory mice. Vet Pathol 27:274–281

    PubMed  CAS  Google Scholar 

  143. Harbord M, Novelli M, Canas B et al (2002) Ym1 is a neutrophil granule protein that crystallizes in p47phox-deficient mice. J Biol Chem 277:5468–5475

    Article  PubMed  CAS  Google Scholar 

  144. Snelgrove RJ, Edwards L, Rae AJ et al (2006) An absence of reactive oxygen species improves the resolution of lung influenza infection. Eur J Immunol 36:1364–1373

    Article  PubMed  CAS  Google Scholar 

  145. Marriott HM, Jackson LE, Wilkinson TS et al (2008) Reactive oxygen species regulate neutrophil recruitment and survival in pneumococcal pneumonia. Am J Respir Crit Care Med 177:887–895

    Article  PubMed  Google Scholar 

  146. Snelgrove RJ, Edwards L, Williams AE et al (2006) In the absence of reactive oxygen species, T cells default to a Th1 phenotype and mediate protection against pulmonary Cryptococcus neoformans infection. J Immunol 177:5509–5516

    PubMed  CAS  Google Scholar 

  147. Gao XP, Standiford TJ, Rahman A et al (2002) Role of NADPH oxidase in the mechanism of lung neutrophil sequestration and microvessel injury induced by Gram-negative sepsis: studies in p47phox–/– and gp91phox–/– mice. J Immunol 168:3974–3982

    PubMed  CAS  Google Scholar 

  148. Serhan CN, Brain SD, Buckley CD et al (2007) Resolution of inflammation: state of the art, definitions and terms. FASEB J 21:325–332

    Article  PubMed  CAS  Google Scholar 

  149. Metcalfe DD, Thompson HL, Klebanoff SJ et al (1990) Oxidative degradation of rat mast-cell heparin proteoglycan. Biochem J 272:51–57

    PubMed  CAS  Google Scholar 

  150. Geiszt M, Kapus A, Nemet K et al (1997) Regulation of capacitative Ca2+ influx in human neutrophil granulocytes. Alterations in chronic granulomatous disease. J Biol Chem 272:26471–26478

    Article  PubMed  CAS  Google Scholar 

  151. Geiszt M, Kapus A, Ligeti E (2001) Chronic granulomatous disease: more than the lack of superoxide? J Leukoc Biol 69:191–196

    PubMed  CAS  Google Scholar 

  152. Xu S-Z, Sukumar P, Zeng F et al (2008) TRPC channel activation by extracellular thioredoxin. Nature 451:69–72

    Article  PubMed  CAS  Google Scholar 

  153. Rada BK, Geiszt M, Van Bruggen R et al (2003) Calcium signalling is altered in myeloid cells with a deficiency in NADPH oxidase activity. Clin Exp Immunol 132:53–60

    Article  PubMed  CAS  Google Scholar 

  154. Hatanaka E, Carvalho BTC, Condino-Neto A et al (2004) Hyperresponsiveness of neutrophils from gp 91phox deficient patients to lipopolysaccharide and serum amyloid A. Immunol Lett 94:43–46

    Article  PubMed  CAS  Google Scholar 

  155. Lekstrom–Himes JA, Kuhns DB, Alvord WG et al (2005) Inhibition of human neutrophil IL-8 production by hydrogen peroxide and dysregulation in chronic granulomatous disease. J Immunol 174:411–417

    PubMed  CAS  Google Scholar 

  156. Brown JR, Goldblatt D, Buddle J et al (2003) Diminished production of anti-inflammatory mediators during neutrophil apoptosis and macrophage phagocytosis in chronic granulomatous disease (CGD). J Leukoc Biol 73:591–599

    Article  PubMed  CAS  Google Scholar 

  157. Warris A, Netea MG, Wang JE et al (2003) Cytokine release in healthy donors and patients with chronic granulomatous disease upon stimulation with aspergillus fumigatus. Scand J Infect Dis 35:482–487

    Article  PubMed  CAS  Google Scholar 

  158. Ottonello L, Frumento G, Arduino N et al (2002) Differential regulation of spontaneous and immune complex-induced neutrophil apoptosis by proinflammatory cytokines. Role of oxidants, Bax and caspase-3. J Leukoc Biol 72:125–132

    PubMed  CAS  Google Scholar 

  159. Yamamoto A, Taniuchi S, Tsuji S et al (2002) Role of reactive oxygen species in neutrophil apoptosis following ingestion of heat-killed Staphylococcus aureus. Clin Exp Immunol 129:479–484

    Article  PubMed  CAS  Google Scholar 

  160. Kasahara Y, Iwai K, Yachie A et al (1997) Involvement of reactive oxygen intermediates in spontaneous and CD95 (Fas/APO-1)-mediated apoptosis of neutrophils. Blood 89:1748–1753

    PubMed  CAS  Google Scholar 

  161. Gamberale R, Giordano M, Trevani AS et al (1998) Modulation of human neutrophil apoptosis by immune complexes. J Immunol 161:3666–3674

    PubMed  CAS  Google Scholar 

  162. Hiraoka W, Vazquez N, Nieves-Neira W et al (1998) Role of oxygen radicals generated by NADPH oxidase in apoptosis induced in human leukemia cells. J Clin Invest 102:1961–1968

    Article  PubMed  CAS  Google Scholar 

  163. Kobayashi SD, Voyich JM, Braughton KR et al (2004) Gene expression profiling provides insight into the pathophysiology of chronic granulomatous disease. J Immunol 172:636–643

    PubMed  CAS  Google Scholar 

  164. Coxon A, Rieu P, Barkalow FJ et al (1996) A novel role for the beta 2 integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity 5:653–666

    Article  PubMed  Google Scholar 

  165. Hampton MB, Fadeel B, Orrenius S (1998) Redox regulation of the caspases during apoptosis. Ann N Y Acad Sci 854:328–335

    Article  PubMed  CAS  Google Scholar 

  166. Hampton MB, Vissers MC, Keenan JI et al (2002) Oxidant-mediated phosphatidylserine exposure and macrophage uptake of activated neutrophils: possible impairment in chronic granulomatous disease. J Leukoc Biol 71:775–781

    PubMed  CAS  Google Scholar 

  167. Sanford AN, Suriano AR, Herche D et al (2006) Abnormal apoptosis in chronic granulomatous disease and autoantibody production characteristic of lupus. Rheumatology (Oxford) 45(2):178–181 (Feb)

    Article  CAS  Google Scholar 

  168. Hartl D, Lehmann N, Hoffmann F et al (2008) Dysregulation of innate immune receptors on neutrophils in chronic granulomatous disease. J Allergy Clin Immunol (in press)

  169. Harrison CA, Raftery MJ, Walsh J et al (1999) Oxidation regulates the inflammatory properties of the murine S100 protein S100A8. J Biol Chem 274:8561–8569

    Article  PubMed  CAS  Google Scholar 

  170. Clark RA, Klebanoff SJ (1979) Chemotactic factor inactivation by the myeloperoxidase-hydrogen peroxide–halide system. J Clin Invest 64:913–920

    Article  PubMed  CAS  Google Scholar 

  171. Henderson WR, Klebanoff SJ (1983) Leukotriene production and inactivation by normal, chronic granulomatous disease and myeloperoxidase-deficient neutrophils. J Biol Chem 258:13522–13527

    PubMed  CAS  Google Scholar 

  172. Hamasaki T, Sakano T, Kobayashi M et al (1989) Leukotriene B4 metabolism in neutrophils of patients with chronic granulomatous disease: phorbol myristate acetate decreases endogenous leukotriene B4 via NADPH oxidase-dependent mechanism. Eur J Clin Invest 19:404–411

    Article  PubMed  CAS  Google Scholar 

  173. Remans PH, van Oosterhout M, Smeets TJ et al (2005) Intracellular free radical production in synovial T lymphocytes from patients with rheumatoid arthritis. Arthritis Rheum 52:2003–2009

    Article  PubMed  CAS  Google Scholar 

  174. Gelderman KA, Hultqvist M, Holmberg J et al (2006) T cell surface redox levels determine T cell reactivity and arthritis susceptibility. Proc Natl Acad Sci U S A 103:12831–12836

    Article  PubMed  CAS  Google Scholar 

  175. Hultqvist M, Backlund J, Bauer K et al (2007) Lack of reactive oxygen species breaks T cell tolerance to collagen type II and allows development of arthritis in mice. J Immunol 179:1431–1437

    PubMed  CAS  Google Scholar 

  176. Romani L, Fallarino F, De Luca A et al (2008) Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451:211–215

    Article  PubMed  CAS  Google Scholar 

  177. Adams LB, Dinauer MC, Morgenstern DE et al (1997) Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis using transgenic mice. Tuberc. Lung Dis 78:237–246

    Article  CAS  Google Scholar 

  178. van der Vliet A (2008) NADPH oxidases in lung biology and pathology: Host defense enzymes, and more. Free Radic Biol Med 44(6):938–955 (Mar 15)

    Google Scholar 

  179. Wu DC, Re DB, Nagai M et al (2006) The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proc Natl Acad Sci U S A 103:12132–12137

    Article  PubMed  CAS  Google Scholar 

  180. Beard CJ, Key L, Newburger PE et al (1986) Neutrophil defect associated with malignant infantile osteopetrosis. J Lab Clin Med 108:498–505

    PubMed  CAS  Google Scholar 

  181. Basu S, Michaelsson K, Olofsson H et al (2001) Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 288:275–279

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Karen Bedard and Terry Kay Epperson for critical rereading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela G. Schäppi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäppi, M.G., Jaquet, V., Belli, D.C. et al. Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase. Semin Immunopathol 30, 255–271 (2008). https://doi.org/10.1007/s00281-008-0119-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-008-0119-2

Keywords

Navigation