Skip to main content

Advertisement

Log in

Modification of accessory molecule signaling

  • Original Article
  • Published:
Springer Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The concept of costimulation, the requirement for an independent accessory cellular activation signal that supplements the signal delivered to a lymphocyte by antigen, has been a focal point of progress in understanding the regulation of the immune system. While considerable attention has been directed to new developments related to the activation of cells of the innate immune system through Toll-like receptors, resulting in the production of soluble mediators, augmented expression of cell surface costimulatory molecules on antigen-presenting cells is arguably the most significant early outcome of immune system activation. It is those cell surface molecules that provide the essential afferent costimulatory signals to T cells of the adaptive immune response. Once fully activated, T cells express their own cell surface accessory molecules that permit those T cells to instruct interacting B cells, macrophages, and dendritic cells to further implement an effective immune response. Significantly for patients with autoimmune diseases, the manipulation of costimulatory signals represents a rational and effective approach to modulating the chronic immune system activation that characterizes those diseases. Further elucidation of the complexities of members of the accessory molecule families and their functions should lead to an ever greater capacity for therapeutic modulation of the immune response in autoimmune and inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beutler B (2005) The Toll-like receptors: analysis by forward genetic methods. Immunogenetics 57:385–392

    Article  PubMed  CAS  Google Scholar 

  2. Ronnblom L, Eloranta ML, Alm GV (2006) The type I interferon system in systemic lupus erythematosus. Arthritis Rheum 54:408–420

    Article  PubMed  CAS  Google Scholar 

  3. Crow MK, Kirou KA (2004) Interferon-alpha in systemic lupus erythematosus. Curr Opin Rheumatol 16:541–547

    Article  PubMed  CAS  Google Scholar 

  4. Edelman GM (1987) CAMs and Igs: cell adhesion and the evolutionary origins of immunity. Immunol Rev 100:11–45

    Article  PubMed  CAS  Google Scholar 

  5. Coyle AJ, Gutierrez-Ramos JC (2001) The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T cell function. Nat Immunol 2:203–209

    Article  PubMed  CAS  Google Scholar 

  6. Frauwirth KA, Thompson CB (2002) Activation and inhibition of lymphocytes by costimulation. J Clin Invest 109:295–299

    PubMed  CAS  Google Scholar 

  7. Gonzalo JA, Delaney T, Corcoran J, Goodearl A, Gutierrez-Ramos JC, Coyle AJ (2001) Cutting edge: the related molecules CD28 and inducible costimulator deliver both unique and complementary signals required for optimal T cell activation. J Immunol 166:1–5

    PubMed  CAS  Google Scholar 

  8. Peggs KS, Allison JP (2005) Co-stimulatory pathways in lymphocyte regulation: the immunoglobulin superfamily. Br J Haematol 130:809–824

    Article  PubMed  CAS  Google Scholar 

  9. Sharpe AH, Freeman GJ (2002) The B7–CD28 superfamily. Nat Rev Immunol 2:116–126

    Article  PubMed  CAS  Google Scholar 

  10. Shapiro L, Scherer PE (1998) The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr Biol 8:335–338

    Article  PubMed  CAS  Google Scholar 

  11. Banchereau J, Bazan F, Blanchard D, Briere F, Galizzi JP, van Kooten C, Liu YJ, Rousset F, Saeland S (1994) The CD40 antigen and its ligand. Annu Rev Immunol 12:881–922

    Article  PubMed  CAS  Google Scholar 

  12. Bretscher P, Cohn M (1970) A theory of self–nonself discrimination. Science 169:1042–1049

    Article  PubMed  CAS  Google Scholar 

  13. Bretscher P (1992) The two-signal model of lymphocyte activation twenty-one years later. Immunol Today 13:74–76

    Article  PubMed  CAS  Google Scholar 

  14. Crow MK, Kunkel HG (1982) Human dendritic cells: major stimulators of the autologous and allogeneic mixed leucocyte reactions. Clin Exp Immunol 49:338–346

    PubMed  CAS  Google Scholar 

  15. van Voorhis WC, Valinsky J, Hoffman E, Luban J, Hair LS, Steinman RM (1983) Relative efficacy of human monocytes and dendritic cells as accessory cells for T cell replication. J Exp Med 158:174–191

    Article  PubMed  Google Scholar 

  16. Crow MK, Kunkel HG (1985) Activated B lymphocytes: stimulators of an augmented autologous mixed leukocyte reaction. Cell Immunol 90:555–568

    Article  PubMed  CAS  Google Scholar 

  17. Schwartz RH (2003) T cell anergy. Annu Rev Immunol 21:305–334

    Article  PubMed  CAS  Google Scholar 

  18. Beyersdorf N, Gaupp S, Balbach K, Schmidt J, Toyka KV, Lin CH, Hanke T, Hunig T, Kerkau T, Gold R (2005) Selective targeting of regulatory T cells with CD28 superagonists allows effective therapy of experimental autoimmune encephalomyelitis. J Exp Med 202:445–455

    Article  PubMed  CAS  Google Scholar 

  19. Beyersdorf N, Hanke T, Kerkau T, Hunig T (2006) CD28 superagonists put a break on autoimmunity by preferentially activating CD4+CD25+ regulatory T cells. Autoimmun Rev 5:40–45

    Article  PubMed  Google Scholar 

  20. Dabbagh K, Dahl ME, Stepick-Biek P, Lewis DB (2002) Toll-like receptor 4 is required for optimal development of Th2 immune responses: role of dendritic cells. J Immunol 168:4524–4530

    PubMed  CAS  Google Scholar 

  21. Shlomchik MJ, Craft JE, Mamula MJ (2001) From T to B and back again: positive feedback in systemic autoimmune disease. Nat Rev Immunol 1:147–153

    Article  PubMed  CAS  Google Scholar 

  22. Martens PB, Goronzy JJ, Schaid D, Weyand CM (1997) Expansion of unusual CD4+ T cells in severe rheumatoid arthritis. Arthritis Rheum 40:1106–1114

    Article  PubMed  CAS  Google Scholar 

  23. Coyle AJ, Lehar S, Lloyd C, Tian J, Delaney T, Manning S, Nguyen T, Burwell T, Schneider H, Gonzalo JA, Gosselin M, Owen LR, Rudd CE, Gutierrez-Ramos JC (2000) The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13:95–105

    Article  PubMed  CAS  Google Scholar 

  24. Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397:263–266

    Article  PubMed  CAS  Google Scholar 

  25. Okazaki T, Iwai Y, Honjo T (2002) New regulatory co-receptors: inducible co-stimulator and PD-1. Curr Opin Immunol 14:779–782

    Article  PubMed  CAS  Google Scholar 

  26. Wallin JJ, Liang L, Bakardjiev A, Sha WC (2001) Enhancement of CD8+ T cell responses by ICOS/B7h costimulation. J Immunol 167:132–139

    PubMed  CAS  Google Scholar 

  27. Futagawa T, Akiba H, Kodama T, Takeda K, Hosoda Y, Yagita H, Okumura K (2002) Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells. Int Immunol 14:275–286

    Article  PubMed  CAS  Google Scholar 

  28. Linton PJ, Bautista B, Biederman E, Bradley ES, Harbertson J, Kondrack RM, Padrick RC, Bradley LM (2003) Costimulation via OX40L expressed by B cells is sufficient to determine the extent of primary CD4 cell expansion and Th2 cytokine secretion in vivo. J Exp Med 197:875–883

    Article  PubMed  CAS  Google Scholar 

  29. Lindstein T, June CH, Ledbetter JA, Stella G, Thompson CB (1989) Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244:339–343

    Article  PubMed  CAS  Google Scholar 

  30. de Boer M, Kasran A, Kwekkeboom J, Walter H, Vandenberghe P, Ceuppens JL (1993) Ligation of B7 with CD28/CTLA-4 on T cells results in CD40 ligand expression, interleukin-4 secretion and efficient help for antibody production by B cells. Eur J Immunol 23:3120–3125

    Article  PubMed  Google Scholar 

  31. Smith KM, Brewer JM, Webb P, Coyle AJ, Gutierrez-Ramos C, Garside P (2003) Inducible costimulatory molecule-B7-related protein 1 interactions are important for the clonal expansion and B cell helper functions of naive, Th1, and Th2 T cells. J Immunol 170:2310–2315

    PubMed  CAS  Google Scholar 

  32. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  PubMed  CAS  Google Scholar 

  33. Greenwald RJ, Latchman YE, Sharpe AH (2002) Negative co-receptors on lymphocytes. Curr Opin Immunol 14:391–396

    Article  PubMed  CAS  Google Scholar 

  34. Greenwald RJ, Oosterwegel MA, van der Woude D, Kubal A, Mandelbrot DA, Boussiotis VA, Sharpe AH (2002) CTLA-4 regulates cell cycle progression during a primary immune response. Eur J Immunol 32:366–373

    Article  PubMed  CAS  Google Scholar 

  35. Riley JL, June CH (2005) The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood 105:13–21

    Article  PubMed  CAS  Google Scholar 

  36. Collins AV, Brodie DW, Gilbert RJ, Iaboni A, Manso-Sancho R, Walse B, Stuart DI, van der Merwe PA, Davis SJ (2002) The interaction properties of costimulatory molecules revisited. Immunity 17:201–210

    Article  PubMed  CAS  Google Scholar 

  37. McAdam AJ, Greenwald RJ, Levin MA, Chernova T, Malenkovich N, Ling V, Freeman GJ, Sharpe AH (2001) ICOS is critical for CD40-mediated antibody class switching. Nature 409:102–105

    Article  PubMed  CAS  Google Scholar 

  38. Liszewski MK, Farries TC, Lublin DM, Rooney IA, Atkinson JP (1996) Control of the complement system. Adv Immunol 61:201–283

    Article  PubMed  CAS  Google Scholar 

  39. Mackay F, Kalled SL (2002) TNF ligands and receptors in autoimmunity: an update. Curr Opin Immunol 14:783–790

    Article  PubMed  CAS  Google Scholar 

  40. Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, Bedell MA, Edelhoff S, Disteche CM, Simoneaux DK et al (1993) CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259:990–993

    Article  PubMed  CAS  Google Scholar 

  41. Lederman S, Yellin MJ, Krichevsky A, Belko J, Lee JJ, Chess L (1992) Identification of a novel surface protein on activated CD4+ T cells that induces contact-dependent B cell differentiation (help). J Exp Med 175:1091–1101

    Article  PubMed  CAS  Google Scholar 

  42. Klaus SJ, Pinchuk LM, Ochs HD, Law CL, Fanslow WC, Armitage RJ, Clark EA (1994) Costimulation through CD28 enhances T cell-dependent B cell activation via CD40–CD40L interaction. J Immunol 152:5643–5652

    PubMed  CAS  Google Scholar 

  43. Lederman S, Yellin MJ, Cleary AM, Pernis A, Inghirami G, Cohn LE, Covey LR, Lee JJ, Rothman P, Chess L (1994) T-BAM/CD40-L on helper T lymphocytes augments lymphokine-induced B cell Ig isotype switch recombination and rescues B cells from programmed cell death. J Immunol 152:2163–2171

    PubMed  CAS  Google Scholar 

  44. Shapira SK, Vercelli D, Jabara HH, Fu SM, Geha RS (1992) Molecular analysis of the induction of immunoglobulin E synthesis in human B cells by interleukin 4 and engagement of CD40 antigen. J Exp Med 175:289–292

    Article  PubMed  CAS  Google Scholar 

  45. Splawski JB, Fu SM, Lipsky PE (1993) Immunoregulatory role of CD40 in human B cell differentiation. J Immunol 150:1276–1285

    PubMed  CAS  Google Scholar 

  46. Schattner EJ, Elkon KB, Yoo DH, Tumang J, Krammer PH, Crow MK, Friedman SM (1995) CD40 ligation induces Apo-1/Fas expression on human B lymphocytes and facilitates apoptosis through the Apo-1/Fas pathway. J Exp Med 182:1557–1565

    Article  PubMed  CAS  Google Scholar 

  47. Caux C, Massacrier C, Vanbervliet B, Dubois B, van Kooten C, Durand I, Banchereau J (1994) Activation of human dendritic cells through CD40 cross-linking. J Exp Med 180:1263–1272

    Article  PubMed  CAS  Google Scholar 

  48. Alderson MR, Armitage RJ, Tough TW, Strockbine L, Fanslow WC, Spriggs MK (1993) CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J Exp Med 178:669–674

    Article  PubMed  CAS  Google Scholar 

  49. Kobayashi N, Nagumo H, Agematsu K (2002) IL-10 enhances B-cell IgE synthesis by promoting differentiation into plasma cells, a process that is inhibited by CD27/CD70 interaction. Clin Exp Immunol 129:446–452

    Article  PubMed  CAS  Google Scholar 

  50. Kumar-Sinha C, Varambally S, Sreekumar A, Chinnaiyan AM (2002) Molecular cross-talk between the TRAIL and interferon signaling pathways. J Biol Chem 277:575–585

    Article  PubMed  CAS  Google Scholar 

  51. Cerutti A, Schaffer A, Goodwin RG, Shah S, Zan H, Ely S, Casali P (2000) Engagement of CD153 (CD30 ligand) by CD30+ T cells inhibits class switch DNA recombination and antibody production in human IgD+ IgM+ B cells. J Immunol 165:786–794

    PubMed  CAS  Google Scholar 

  52. Pollard KM, Hultman P, Kono DH (2003) Using single-gene deletions to identify checkpoints in the progression of systemic autoimmunity. Ann N Y Acad Sci 987:236–239

    Article  PubMed  CAS  Google Scholar 

  53. Castigli E, Alt FW, Davidson L, Bottaro A, Mizoguchi E, Bhan AK, Geha RS (1994) CD40-deficient mice generated by recombination-activating gene-2-deficient blastocyst complementation. Proc Natl Acad Sci USA 91:12135–12139

    Article  PubMed  CAS  Google Scholar 

  54. Dong C, Juedes AE, Temann UA, Shresta S, Allison JP, Ruddle NH, Flavell RA (2001) ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409:97–101

    Article  PubMed  CAS  Google Scholar 

  55. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547

    Article  PubMed  CAS  Google Scholar 

  56. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988

    Article  PubMed  CAS  Google Scholar 

  57. Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151

    Article  PubMed  CAS  Google Scholar 

  58. Chu JL, Drappa J, Parnassa A, Elkon KB (1993) The defect in Fas mRNA expression in MRL/lpr mice is associated with insertion of the retrotransposon, ETn. J Exp Med 178:723–730

    Article  PubMed  CAS  Google Scholar 

  59. Hudson LL, Rocca K, Song YW, Pandey JP (2002) CTLA-4 gene polymorphisms in systemic lupus erythematosus: a highly significant association with a determinant in the promoter region. Hum Genet 111:452–455

    Article  PubMed  CAS  Google Scholar 

  60. Desai-Mehta A, Lu L, Ramsey-Goldman R, Datta SK (1996) Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J Clin Invest 97:2063–2073

    Article  PubMed  CAS  Google Scholar 

  61. Koshy M, Berger D, Crow MK (1996) Increased expression of CD40 ligand on systemic lupus erythematosus lymphocytes. J Clin Invest 98:826–837

    Article  PubMed  CAS  Google Scholar 

  62. Mohan C, Shi Y, Laman JD, Datta SK (1995) Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J Immunol 154:1470–1480

    PubMed  CAS  Google Scholar 

  63. Vakkalanka RK, Woo C, Kirou KA, Koshy M, Berger D, Crow MK (1999) Elevated levels and functional capacity of soluble CD40 ligand in systemic lupus erythematosus sera. Arthritis Rheum 42:871–881

    Article  PubMed  CAS  Google Scholar 

  64. Kato K, Santana-Sahagun E, Rassenti LZ, Weisman MH, Tamura N, Kobayashi S, Hashimoto H, Kipps TJ (1999) The soluble CD40 ligand sCD154 in systemic lupus erythematosus. J Clin Invest 104:947–955

    Article  PubMed  CAS  Google Scholar 

  65. Bijl M, Horst G, Limburg PC, Kallenberg CG (2001) Expression of costimulatory molecules on peripheral blood lymphocytes of patients with systemic lupus erythematosus. Ann Rheum Dis 60:523–526

    Article  PubMed  CAS  Google Scholar 

  66. Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V, Brookes AJ, Tentler D, Kristjansdottir H, Grondal G, Bolstad AI, Svenungsson E, Lundberg I, Sturfelt G, Jonssen A, Truedsson L, Lima G, Alcocer-Varela J, Jonsson R, Gyllensten UB, Harley JB, Alarcon-Segovia D, Steinsson K, Alarcon-Riquelme ME (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32:666–669

    Article  PubMed  CAS  Google Scholar 

  67. Pullmann R Jr, Lukac J, Skerenova M, Rovensky J, Hybenova J, Melus V, Celec S, Pullmann R, Hyrdel R (1999) Cytotoxic T lymphocyte antigen 4 (CTLA-4) dimorphism in patients with systemic lupus erythematosus. Clin Exp Rheumatol 17:725–729

    PubMed  Google Scholar 

  68. Abrams JR, Kelley SL, Hayes E, Kikuchi T, Brown MJ, Kang S, Lebwohl MG, Guzzo CA, Jegasothy BV, Linsley PS, Krueger JG (2000) Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J Exp Med 192:681–694

    Article  PubMed  CAS  Google Scholar 

  69. Daikh DI, Finck BK, Linsley PS, Hollenbaugh D, Wofsy D (1997) Long-term inhibition of murine lupus by brief simultaneous blockade of the B7/CD28 and CD40/gp39 costimulation pathways. J Immunol 159:3104–3108

    PubMed  CAS  Google Scholar 

  70. Emery P (2003) The therapeutic potential of costimulatory blockade with CTLA4Ig in rheumatoid arthritis. Expert Opin Investig Drugs 12:673–681

    Article  PubMed  CAS  Google Scholar 

  71. Bluestone JA, St Clair EW, Turka LA (2006) CTLA4Ig: Bridging the basic immunology with clinical application. Immunity 24:233–238

    Article  PubMed  CAS  Google Scholar 

  72. Moreland LW, Alten R, van den Bosch F, Appelboom T, Leon M, Emery P, Cohen S, Luggen M, Shergy W, Nuamah I, Becker JC (2002) Costimulatory blockade in patients with rheumatoid arthritis: a pilot, dose-finding, double-blind, placebo-controlled clinical trial evaluating CTLA-4Ig and LEA29Y eighty-five days after the first infusion. Arthritis Rheum 46:1470–1479

    Article  PubMed  CAS  Google Scholar 

  73. Knoerzer DB, Karr RW, Schwartz BD, Mengle-Gaw LJ (1995) Collagen-induced arthritis in the BB rat. Prevention of disease by treatment with CTLA-4-Ig. J Clin Invest 96:987–993

    Article  PubMed  CAS  Google Scholar 

  74. Wang X, Huang W, Mihara M, Sinha J, Davidson A (2002) Mechanism of action of combined short-term CTLA4Ig and anti-CD40 ligand in murine systemic lupus erythematosus. J Immunol 168:2046–2053

    PubMed  CAS  Google Scholar 

  75. Tiede I, Fritz G, Strand S, Poppe D, Dvorsky R, Strand D, Lehr HA, Wirtz S, Becker C, Atreya R, Mudter J, Hildner K, Bartsch B, Holtmann M, Blumberg R, Walczak H, Iven H, Galle PR, Ahmadian MR, Neurath MF (2003) CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest 111:1133–1145

    PubMed  CAS  Google Scholar 

  76. Kosuge H, Suzuki J, Gotoh R, Koga N, Ito H, Isobe M, Inobe M, Uede T (2003) Induction of immunologic tolerance to cardiac allograft by simultaneous blockade of inducible co-stimulator and cytotoxic T-lymphocyte antigen 4 pathway. Transplantation 75:1374–1379

    Article  PubMed  CAS  Google Scholar 

  77. Foell J, Strahotin S, O’Neil SP, McCausland MM, Suwyn C, Haber M, Chander PN, Bapat AS, Yan XJ, Chiorazzi N, Hoffmann MK, Mittler RS (2003) CD137 costimulatory T cell receptor engagement reverses acute disease in lupus-prone NZB x NZW F1 mice. J Clin Invest 111:1505–1518

    PubMed  CAS  Google Scholar 

  78. Kalled SL, Cutler AH, Datta SK, Thomas DW (1998) Anti-CD40 ligand antibody treatment of SNF1 mice with established nephritis: preservation of kidney function. J Immunol 160:2158–2165

    PubMed  CAS  Google Scholar 

  79. Kalunian KC, Davis JC Jr, Merrill JT, Totoritis MC, Wofsy D (2002) Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 46:3251–3258

    Article  PubMed  CAS  Google Scholar 

  80. Huang W, Sinha J, Newman J, Reddy B, Budhai L, Furie R, Vaishnaw A, Davidson A (2002) The effect of anti-CD40 ligand antibody on B cells in human systemic lupus erythematosus. Arthritis Rheum 46:1554–1562

    Article  PubMed  CAS  Google Scholar 

  81. Peggs KS, Quezada SA, Korman AJ, Allison JP (2006) Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr Opin Immunol 18:206–213

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary K. Crow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crow, M.K. Modification of accessory molecule signaling. Springer Semin Immun 27, 409–424 (2006). https://doi.org/10.1007/s00281-006-0018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-006-0018-3

Keywords

Navigation