Skip to main content

The CD28–B7 Family of Co-signaling Molecules

  • Chapter
  • First Online:
Co-signal Molecules in T Cell Activation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1189))

Abstract

Immune responses are controlled by the optimal balance between protective immunity and immune tolerance. T-cell receptor (TCR) signals are modulated by co-signaling molecules, which are divided into co-stimulatory and co-inhibitory molecules. By expression at the appropriate time and location, co-signaling molecules positively and negatively control T-cell differentiation and function. For example, ligation of the CD28 on T cells provides a critical secondary signal along with TCR ligation for naive T-cell activation. In contrast, co-inhibitory signaling by the CD28–B7 family is important to regulate immune homeostasis and host defense, as these signals limit the strength and duration of immune responses to prevent autoimmunity. At the same time, microorganisms or tumor cells can use these pathways to establish an immunosuppressive environment to inhibit the immune responses against themselves. Understanding these co-inhibitory pathways will support the development of new immunotherapy for the treatment of tumors and autoimmune and infectious diseases. Here, we introduce diverse molecules belonging to the members of the CD28–B7 family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aicher A, Hayden-Ledbetter M, Brady WA, Pezzutto A, Richter G, Magaletti D, Buckwalter S, Ledbetter JA, Clark EA (2000) Characterization of human inducible costimulator ligand expression and function. J Immunol 164:4689–4696

    Article  CAS  PubMed  Google Scholar 

  • Akiba H, Takeda K, Kojima Y, Usui Y, Harada N, Yamazaki T, Ma J, Tezuka K, Yagita H, Okumura K (2005) The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J Immunol 175:2340–2348

    Article  CAS  PubMed  Google Scholar 

  • Arimura Y, Kato H, Dianzani U, Okamoto T, Kamekura S, Buonfiglio D, Miyoshi-Akiyama T, Uchiyama T, Yagi J (2002) A co-stimulatory molecule on activated T cells, H4/ICOS, delivers specific signals in T(h) cells and regulates their responses. Int Immunol 14:555–566

    Article  CAS  PubMed  Google Scholar 

  • Attema JL, Reeves R, Murray V, Levichkin I, Temple MD, Tremethick DJ, Shannon MF (2002) The human IL-2 gene promoter can assemble a positioned nucleosome that becomes remodeled upon T cell activation. J Immunol 169:2466–2476

    Article  CAS  PubMed  Google Scholar 

  • Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687

    Article  CAS  PubMed  Google Scholar 

  • Bhatia S, Edidin M, Almo SC, Nathenson SG (2005) Different cell surface oligomeric states of B7-1 and B7-2: implications for signaling. Proc Natl Acad Sci U S A 102:15569–15574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bignotti E, Tassi RA, Calza S, Ravaggi A, Romani C, Rossi E, Falchetti M, Odicino FE, Pecorelli S, Santin AD (2006) Differential gene expression profiles between tumor biopsies and short-term primary cultures of ovarian serous carcinomas: identification of novel molecular biomarkers for early diagnosis and therapy. Gynecol Oncol 103:405–416

    Article  CAS  PubMed  Google Scholar 

  • Boise LH, Minn AJ, Noel PJ, June CH, Accavitti MA, Lindsten T, Thompson CB (1995) CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3:87–98

    Article  CAS  PubMed  Google Scholar 

  • Boomer JS, Green JM (2010) An enigmatic tail of CD28 signaling. Cold Spring Harb Perspect Biol 2:a002436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borriello F, Lederer J, Scott S, Sharpe AH (1997) MRC OX-2 defines a novel T cell costimulatory pathway. J Immunol 158:4548–4554

    CAS  PubMed  Google Scholar 

  • Bour-Jordan H, Grogan JL, Tang Q, Auger JA, Locksley RM, Bluestone JA (2003) CTLA-4 regulates the requirement for cytokine-induced signals in T(H)2 lineage commitment. Nat Immunol 4:182–188

    Article  CAS  PubMed  Google Scholar 

  • Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, Golstein P (1987) A new member of the immunoglobulin superfamily--CTLA-4. Nature 328:267–270

    Article  CAS  PubMed  Google Scholar 

  • Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27:111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butte MJ, Lee SJ, Jesneck J, Keir ME, Haining WN, Sharpe AH (2012) CD28 costimulation regulates genome-wide effects on alternative splicing. PLoS One 7:e40032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carreno BM, Collins M (2002) The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol 20:29–53

    Article  CAS  PubMed  Google Scholar 

  • Castriconi R, Dondero A, Augugliaro R, Cantoni C, Carnemolla B, Sementa AR, Negri F, Conte R, Corrias MV, Moretta L et al (2004) Identification of 4Ig-B7-H3 as a neuroblastoma-associated molecule that exerts a protective role from an NK cell-mediated lysis. Proc Natl Acad Sci U S A 101:12640–12645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O‘Sullivan D, Huang SC, van der Windt GJ, Blagih J, Qiu J et al (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153:1239–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapoval AI, Ni J, Lau JS, Wilcox RA, Flies DB, Liu D, Dong H, Sica GL, Zhu G, Tamada K et al (2001) B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol 2:269–274

    Article  CAS  PubMed  Google Scholar 

  • Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL (2004) SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 173:945–954

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Muckersie E, Luo C, Forrester JV, Xu H (2010) Inhibition of the alternative pathway of complement activation reduces inflammation in experimental autoimmune uveoretinitis. Eur J Immunol 40:2870–2881

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wang F, Cai Q, Shen S, Chen Y, Hao C, Sun J (2013) A novel anti-human ICOSL monoclonal antibody that enhances IgG production of B cells. Monoclon Antib Immunodiagn Immunother 32:125–131

    Article  CAS  PubMed  Google Scholar 

  • Cho HY, Lee SW, Seo SK, Choi IW, Choi I, Lee SW (2008) Interferon-sensitive response element (ISRE) is mainly responsible for IFN-alpha-induced upregulation of programmed death-1 (PD-1) in macrophages. Biochim Biophys Acta 1779:811–819

    Article  CAS  PubMed  Google Scholar 

  • Chuang E, Fisher TS, Morgan RW, Robbins MD, Duerr JM, Vander Heiden MG, Gardner JP, Hambor JE, Neveu MJ, Thompson CB (2000) The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13:313–322

    Article  CAS  PubMed  Google Scholar 

  • Coyle AJ, Lehar S, Lloyd C, Tian J, Delaney T, Manning S, Nguyen T, Burwell T, Schneider H, Gonzalo JA et al (2000) The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13:95–105

    Article  CAS  PubMed  Google Scholar 

  • Crotty S (2014) T follicular helper cell differentiation, function, and roles in disease. Immunity 41:529–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dariavach P, Mattei MG, Golstein P, Lefranc MP (1988) Human Ig superfamily CTLA-4 gene: chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains. Eur J Immunol 18:1901–1905

    Article  CAS  PubMed  Google Scholar 

  • de Jong VM, Zaldumbide A, van der Slik AR, Persengiev SP, Roep BO, Koeleman BP (2013) Post-transcriptional control of candidate risk genes for type 1 diabetes by rare genetic variants. Genes Immun 14:58–61

    Article  PubMed  CAS  Google Scholar 

  • Diehn M, Alizadeh AA, Rando OJ, Liu CL, Stankunas K, Botstein D, Crabtree GR, Brown PO (2002) Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc Natl Acad Sci U S A 99:11796–11801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dokmanovic-Chouinard M, Chung WK, Chevre JC, Watson E, Yonan J, Wiegand B, Bromberg Y, Wakae N, Wright CV, Overton J et al (2008) Positional cloning of "Lisch-Like", a candidate modifier of susceptibility to type 2 diabetes in mice. PLoS Genet 4:e1000137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong C, Juedes AE, Temann UA, Shresta S, Allison JP, Ruddle NH, Flavell RA (2001a) ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409:97–101

    Article  CAS  PubMed  Google Scholar 

  • Dong C, Temann UA, Flavell RA (2001b) Cutting edge: critical role of inducible costimulator in germinal center reactions. J Immunol 166:3659–3662

    Article  CAS  PubMed  Google Scholar 

  • DuPage M, Chopra G, Quiros J, Rosenthal WL, Morar MM, Holohan D, Zhang R, Turka L, Marson A, Bluestone JA (2015) The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity 42:227–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelhardt JJ, Sullivan TJ, Allison JP (2006) CTLA-4 overexpression inhibits T cell responses through a CD28-B7-dependent mechanism. J Immunol 177:1052–1061

    Article  CAS  PubMed  Google Scholar 

  • Evans EJ, Esnouf RM, Manso-Sancho R, Gilbert RJ, James JR, Yu C, Fennelly JA, Vowles C, Hanke T, Walse B et al (2005) Crystal structure of a soluble CD28-Fab complex. Nat Immunol 6:271–279

    Article  CAS  PubMed  Google Scholar 

  • Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Alegre ML, Puccetti P (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4:1206–1212

    Article  CAS  PubMed  Google Scholar 

  • Fife BT, Pauken KE, Eagar TN, Obu T, Wu J, Tang Q, Azuma M, Krummel MF, Bluestone JA (2009) Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 10:1185–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer KD, Kong YY, Nishina H, Tedford K, Marengere LE, Kozieradzki I, Sasaki T, Starr M, Chan G, Gardener S et al (1998a) Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr Biol 8:554–562

    Article  CAS  PubMed  Google Scholar 

  • Fischer KD, Tedford K, Penninger JM (1998b) Vav links antigen-receptor signaling to the actin cytoskeleton. Semin Immunol 10:317–327

    Article  CAS  PubMed  Google Scholar 

  • Flies DB, Han X, Higuchi T, Zheng L, Sun J, Ye JJ, Chen L (2014) Coinhibitory receptor PD-1H preferentially suppresses CD4(+) T cell-mediated immunity. J Clin Invest 124:1966–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, Sharpe AH (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206:3015–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH, Thompson CB (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16:769–777

    Article  CAS  PubMed  Google Scholar 

  • Freeman GJ, Lombard DB, Gimmi CD, Brod SA, Lee K, Laning JC, Hafler DA, Dorf ME, Gray GS, Reiser H et al (1992) CTLA-4 and CD28 mRNA are coexpressed in most T cells after activation. Expression of CTLA-4 and CD28 mRNA does not correlate with the pattern of lymphokine production. J Immunol 149:3795–3801

    CAS  PubMed  Google Scholar 

  • Gibson HM, Hedgcock CJ, Aufiero BM, Wilson AJ, Hafner MS, Tsokos GC, Wong HK (2007) Induction of the CTLA-4 gene in human lymphocytes is dependent on NFAT binding the proximal promoter. J Immunol 179:3831–3840

    Article  CAS  PubMed  Google Scholar 

  • Girard T, Gaucher D, El-Far M, Breton G, Sekaly RP (2014) CD80 and CD86 IgC domains are important for quaternary structure, receptor binding and co-signaling function. Immunol Lett 161:65–75

    Article  CAS  PubMed  Google Scholar 

  • Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, Candeloro P, Belladonna ML, Bianchi R, Fioretti MC et al (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3:1097–1101

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Chen Z, Yang Y, Jiang Z, Gu Y, Liu Y, Lin C, Pan Z, Yu Y, Jiang M et al (2014) Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology 59:567–579

    Article  CAS  PubMed  Google Scholar 

  • Hathcock KS, Laszlo G, Pucillo C, Linsley P, Hodes RJ (1994) Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function. J Exp Med 180:631–640

    Article  CAS  PubMed  Google Scholar 

  • He C, Qiao H, Jiang H, Sun X (2011) The inhibitory role of b7-h4 in antitumor immunity: association with cancer progression and survival. Clin Dev Immunol 2011:695834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hecht I, Toporik A, Podojil JR, Vaknin I, Cojocaru G, Oren A, Aizman E, Liang SC, Leung L, Dicken Y et al (2018) ILDR2 is a novel B7-like protein that negatively regulates T cell responses. J Immunol 200:2025–2037

    Article  CAS  PubMed  Google Scholar 

  • Helmy KY, Katschke KJ Jr, Gorgani NN, Kljavin NM, Elliott JM, Diehl L, Scales SJ, Ghilardi N, van Lookeren Campagne M (2006) CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124:915–927

    Article  CAS  PubMed  Google Scholar 

  • Higashi T, Tokuda S, Kitajiri S, Masuda S, Nakamura H, Oda Y, Furuse M (2013) Analysis of the ‘angulin’ proteins LSR, ILDR1 and ILDR2--tricellulin recruitment, epithelial barrier function and implication in deafness pathogenesis. J Cell Sci 126:966–977

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Wu X, Jin W, Chang M, Cheng X, Sun SC (2011) Noncanonical NF-kappaB regulates inducible costimulator (ICOS) ligand expression and T follicular helper cell development. Proc Natl Acad Sci U S A 108:12827–12832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Feng Z, Jiang Y, Li J, Xiang Q, Guo S, Yang C, Fei L, Guo G, Zheng L et al (2019) VSIG4 mediates transcriptional inhibition of Nlrp3 and Il-1beta in macrophages. Sci Adv 5:eaau7426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397:263–266

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isomura I, Palmer S, Grumont RJ, Bunting K, Hoyne G, Wilkinson N, Banerjee A, Proietto A, Gugasyan R, Wu L et al (2009) c-Rel is required for the development of thymic Foxp3+ CD4 regulatory T cells. J Exp Med 206:3001–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janakiram M, Chinai JM, Fineberg S, Fiser A, Montagna C, Medavarapu R, Castano E, Jeon H, Ohaegbulam KC, Zhao R et al (2015) Expression, Clinical Significance, and Receptor Identification of the Newest B7 Family Member HHLA2 Protein. Clin Cancer Res 21:2359–2366

    Article  CAS  PubMed  Google Scholar 

  • Jung K, Kang M, Park C, Hyun Choi Y, Jeon Y, Park SH, Seo SK, Jin D, Choi I (2012) Protective role of V-set and immunoglobulin domain-containing 4 expressed on kupffer cells during immune-mediated liver injury by inducing tolerance of liver T- and natural killer T-cells. Hepatology 56:1838–1848

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Zhang C, Ohno T, Azuma M (2017) Unique B7-H1 expression on masticatory mucosae in the oral cavity and trans-coinhibition by B7-H1-expressing keratinocytes regulating CD4(+) T cell-mediated mucosal tissue inflammation. Mucosal Immunol 10:650–660

    Article  CAS  PubMed  Google Scholar 

  • Kao C, Oestreich KJ, Paley MA, Crawford A, Angelosanto JM, Ali MA, Intlekofer AM, Boss JM, Reiner SL, Weinmann AS et al (2011) Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol 12:663–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katschke KJ Jr, Helmy KY, Steffek M, Xi H, Yin J, Lee WP, Gribling P, Barck KH, Carano RA, Taylor RE et al (2007) A novel inhibitor of the alternative pathway of complement reverses inflammation and bone destruction in experimental arthritis. J Exp Med 204:1319–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  PubMed  Google Scholar 

  • Khayyamian S, Hutloff A, Buchner K, Grafe M, Henn V, Kroczek RA, Mages HW (2002) ICOS-ligand, expressed on human endothelial cells, costimulates Th1 and Th2 cytokine secretion by memory CD4+ T cells. Proc Natl Acad Sci U S A 99:6198–6203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinter AL, Godbout EJ, McNally JP, Sereti I, Roby GA, O‘Shea MA, Fauci AS (2008) The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol 181:6738–6746

    Article  CAS  PubMed  Google Scholar 

  • Kondo Y, Ohno T, Nishii N, Harada K, Yagita H, Azuma M (2016) Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma. Oral Oncol 57:54–60

    Article  CAS  PubMed  Google Scholar 

  • Kong KF, Fu G, Zhang Y, Yokosuka T, Casas J, Canonigo-Balancio AJ, Becart S, Kim G, Yates JR 3rd, Kronenberg M et al (2014) Protein kinase C-eta controls CTLA-4-mediated regulatory T cell function. Nat Immunol 15:465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kontgen F, Grumont RJ, Strasser A, Metcalf D, Li R, Tarlinton D, Gerondakis S (1995) Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev 9:1965–1977

    Article  CAS  PubMed  Google Scholar 

  • Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182:459–465

    Article  CAS  PubMed  Google Scholar 

  • Krummel MF, Allison JP (1996) CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 183:2533–2540

    Article  CAS  PubMed  Google Scholar 

  • Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, Schickel JN, Tran DQ, Stoddard J, Zhang Y et al (2014) Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345:1623–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langnaese K, Colleaux L, Kloos DU, Fontes M, Wieacker P (2000) Cloning of Z39Ig, a novel gene with immunoglobulin-like domains located on human chromosome X. Biochim Biophys Acta 1492:522–525

    Article  CAS  PubMed  Google Scholar 

  • Laurent S, Carrega P, Saverino D, Piccioli P, Camoriano M, Morabito A, Dozin B, Fontana V, Simone R, Mortara L et al (2010) CTLA-4 is expressed by human monocyte-derived dendritic cells and regulates their functions. Hum Immunol 71:934–941

    Article  CAS  PubMed  Google Scholar 

  • Leitner J, Klauser C, Pickl WF, Stockl J, Majdic O, Bardet AF, Kreil DP, Dong C, Yamazaki T, Zlabinger G et al (2009) B7-H3 is a potent inhibitor of human T-cell activation: No evidence for B7-H3 and TREML2 interaction. Eur J Immunol 39:1754–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemke D, Pfenning PN, Sahm F, Klein AC, Kempf T, Warnken U, Schnolzer M, Tudoran R, Weller M, Platten M et al (2012) Costimulatory protein 4IgB7H3 drives the malignant phenotype of glioblastoma by mediating immune escape and invasiveness. Clin Cancer Res 18:105–117

    Article  CAS  PubMed  Google Scholar 

  • Li J, Diao B, Guo S, Huang X, Yang C, Feng Z, Yan W, Ning Q, Zheng L, Chen Y et al (2017) VSIG4 inhibits proinflammatory macrophage activation by reprogramming mitochondrial pyruvate metabolism. Nat Commun 8:1322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindstein T, June CH, Ledbetter JA, Stella G, Thompson CB (1989) Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244:339–343

    Article  CAS  PubMed  Google Scholar 

  • Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O‘Connell S, Ceeraz S, Suriawinata AA, Yan S, Ernstoff MS et al (2014) VISTA is an immune checkpoint molecule for human T cells. Cancer Res 74:1924–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling V, Wu PW, Spaulding V, Kieleczawa J, Luxenberg D, Carreno BM, Collins M (2003) Duplication of primate and rodent B7-H3 immunoglobulin V- and C-like domains: divergent history of functional redundancy and exon loss. Genomics 82:365–377

    Article  CAS  PubMed  Google Scholar 

  • Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174:561–569

    Article  CAS  PubMed  Google Scholar 

  • Linsley PS, Greene JL, Tan P, Bradshaw J, Ledbetter JA, Anasetti C, Damle NK (1992) Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J Exp Med 176:1595–1604

    Article  CAS  PubMed  Google Scholar 

  • Linsley PS, Bradshaw J, Greene J, Peach R, Bennett KL, Mittler RS (1996) Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 4:535–543

    Article  CAS  PubMed  Google Scholar 

  • Linterman MA, Rigby RJ, Wong R, Silva D, Withers D, Anderson G, Verma NK, Brink R, Hutloff A, Goodnow CC et al (2009) Roquin differentiates the specialized functions of duplicated T cell costimulatory receptor genes CD28 and ICOS. Immunity 30:228–241

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yuan Y, Chen W, Putra J, Suriawinata AA, Schenk AD, Miller HE, Guleria I, Barth RJ, Huang YH et al (2015) Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc Natl Acad Sci U S A 112:6682–6687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo B, Zhang K, Lu W, Zheng L, Zhang Q, Kanellopoulou C, Zhang Y, Liu Z, Fritz JM, Marsh R et al (2015) AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349:436–440

    Article  CAS  PubMed  Google Scholar 

  • Long M, Park SG, Strickland I, Hayden MS, Ghosh S (2009) Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31:921–931

    Article  CAS  PubMed  Google Scholar 

  • Luo L, Chapoval AI, Flies DB, Zhu G, Hirano F, Wang S, Lau JS, Dong H, Tamada K, Flies AS et al (2004) B7-H3 enhances tumor immunity in vivo by costimulating rapid clonal expansion of antigen-specific CD8+ cytolytic T cells. J Immunol 173:5445–5450

    Article  CAS  PubMed  Google Scholar 

  • Mager DL, Hunter DG, Schertzer M, Freeman JD (1999) Endogenous retroviruses provide the primary polyadenylation signal for two new human genes (HHLA2 and HHLA3). Genomics 59:255–263

    Article  CAS  PubMed  Google Scholar 

  • Mages HW, Hutloff A, Heuck C, Buchner K, Himmelbauer H, Oliveri F, Kroczek RA (2000) Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand. Eur J Immunol 30:1040–1047

    Article  CAS  PubMed  Google Scholar 

  • Magistrelli G, Jeannin P, Herbault N, Benoit De Coignac A, Gauchat JF, Bonnefoy JY, Delneste Y (1999) A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur J Immunol 29:3596–3602

    Article  CAS  PubMed  Google Scholar 

  • Malquori L, Carsetti L, Ruberti G (2008) The 3’ UTR of the human CTLA4 mRNA can regulate mRNA stability and translational efficiency. Biochim Biophys Acta 1779:60–65

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Llordella M, Esensten JH, Bailey-Bucktrout SL, Lipsky RH, Marini A, Chen J, Mughal M, Mattson MP, Taub DD, Bluestone JA (2013) CD28-inducible transcription factor DEC1 is required for efficient autoreactive CD4+ T cell response. J Exp Med 210:1603–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathieu M, Cotta-Grand N, Daudelin JF, Thebault P, Labrecque N (2013) Notch signaling regulates PD-1 expression during CD8(+) T-cell activation. Immunol Cell Biol 91:82–88

    Article  CAS  PubMed  Google Scholar 

  • McAdam AJ, Chang TT, Lumelsky AE, Greenfield EA, Boussiotis VA, Duke-Cohan JS, Chernova T, Malenkovich N, Jabs C, Kuchroo VK et al (2000) Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 165:5035–5040

    Article  CAS  PubMed  Google Scholar 

  • McAdam AJ, Greenwald RJ, Levin MA, Chernova T, Malenkovich N, Ling V, Freeman GJ, Sharpe AH (2001) ICOS is critical for CD40-mediated antibody class switching. Nature 409:102–105

    Article  CAS  PubMed  Google Scholar 

  • Mead KI, Zheng Y, Manzotti CN, Perry LC, Liu MK, Burke F, Powner DJ, Wakelam MJ, Sansom DM (2005) Exocytosis of CTLA-4 is dependent on phospholipase D and ADP ribosylation factor-1 and stimulated during activation of regulatory T cells. J Immunol 174:4803–4811

    Article  CAS  PubMed  Google Scholar 

  • Metzler WJ, Bajorath J, Fenderson W, Shaw SY, Constantine KL, Naemura J, Leytze G, Peach RJ, Lavoie TB, Mueller L et al (1997) Solution structure of human CTLA-4 and delineation of a CD80/CD86 binding site conserved in CD28. Nat Struct Biol 4:527–531

    Article  CAS  PubMed  Google Scholar 

  • Miller RE, Fayen JD, Mohammad SF, Stein K, Kadereit S, Woods KD, Sramkoski RM, Jacobberger JW, Templeton D, Shurin SB et al (2002) Reduced CTLA-4 protein and messenger RNA expression in umbilical cord blood T lymphocytes. Exp Hematol 30:738–744

    Article  CAS  PubMed  Google Scholar 

  • Muscolini M, Camperio C, Porciello N, Caristi S, Capuano C, Viola A, Galandrini R, Tuosto L (2015) Phosphatidylinositol 4-phosphate 5-kinase alpha and Vav1 mutual cooperation in CD28-mediated actin remodeling and signaling functions. J Immunol 194:1323–1333

    Article  CAS  PubMed  Google Scholar 

  • Nurieva R, Thomas S, Nguyen T, Martin-Orozco N, Wang Y, Kaja MK, Yu XZ, Dong C (2006) T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO J 25:2623–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oaks MK, Hallett KM, Penwell RT, Stauber EC, Warren SJ, Tector AJ (2000) A native soluble form of CTLA-4. Cell Immunol 201:144–153

    Article  CAS  PubMed  Google Scholar 

  • Oestreich KJ, Yoon H, Ahmed R, Boss JM (2008) NFATc1 regulates PD-1 expression upon T cell activation. J Immunol 181:4832–4839

    Article  CAS  PubMed  Google Scholar 

  • Ohno T, Zhang C, Kondo Y, Kang S, Furusawa E, Tsuchiya K, Miyazaki Y, Azuma M (2018) The immune checkpoint molecule VISTA regulates allergen-specific Th2-mediated immune responses. Int Immunol 30:3–11

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19:813–824

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T (2013) A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 14:1212–1218

    Article  CAS  PubMed  Google Scholar 

  • Parry RV, Rumbley CA, Vandenberghe LH, June CH, Riley JL (2003) CD28 and inducible costimulatory protein Src homology 2 binding domains show distinct regulation of phosphatidylinositol 3-kinase, Bcl-xL, and IL-2 expression in primary human CD4 T lymphocytes. J Immunol 171:166–174

    Article  CAS  PubMed  Google Scholar 

  • Paterson AM, Lovitch SB, Sage PT, Juneja VR, Lee Y, Trombley JD, Arancibia-Carcamo CV, Sobel RA, Rudensky AY, Kuchroo VK et al (2015) Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J Exp Med 212:1603–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA (2012) Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal 5:ra46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patsoukis N, Li L, Sari D, Petkova V, Boussiotis VA (2013) PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Mol Cell Biol 33:3091–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins D, Wang Z, Donovan C, He H, Mark D, Guan G, Wang Y, Walunas T, Bluestone J, Listman J et al (1996) Regulation of CTLA-4 expression during T cell activation. J Immunol 156:4154–4159

    CAS  PubMed  Google Scholar 

  • Picarda E, Ohaegbulam KC, Zang X (2016) Molecular Pathways: Targeting B7-H3 (CD276) for Human Cancer Immunotherapy. Clin Cancer Res 22:3425–3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pistillo MP, Tazzari PL, Palmisano GL, Pierri I, Bolognesi A, Ferlito F, Capanni P, Polito L, Ratta M, Pileri S et al (2003) CTLA-4 is not restricted to the lymphoid cell lineage and can function as a target molecule for apoptosis induction of leukemic cells. Blood 101:202–209

    Article  CAS  PubMed  Google Scholar 

  • Podojil JR, Hecht I, Chiang MY, Vaknin I, Barbiro I, Novik A, Neria E, Rotman G, Miller SD (2018) ILDR2-Fc Is a Novel Regulator of Immune Homeostasis and Inducer of Antigen-Specific Immune Tolerance. J Immunol 200:2013–2024

    Article  CAS  PubMed  Google Scholar 

  • Prasad DV, Nguyen T, Li Z, Yang Y, Duong J, Wang Y, Dong C (2004) Murine B7-H3 is a negative regulator of T cells. J Immunol 173:2500–2506

    Article  CAS  PubMed  Google Scholar 

  • Qian X, Agematsu K, Freeman GJ, Tagawa Y, Sugane K, Hayashi T (2006) The ICOS-ligand B7-H2, expressed on human type II alveolar epithelial cells, plays a role in the pulmonary host defense system. Eur J Immunol 36:906–918

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Hong B, Shen L, Wu Z, Yao H, Zhang L (2013) B7-H4 enhances oncogenicity and inhibits apoptosis in pancreatic cancer cells. Cell Tissue Res 353:139–151

    Article  CAS  PubMed  Google Scholar 

  • Qureshi OS, Kaur S, Hou TZ, Jeffery LE, Poulter NS, Briggs Z, Kenefeck R, Willox AK, Royle SJ, Rappoport JZ et al (2012) Constitutive clathrin-mediated endocytosis of CTLA-4 persists during T cell activation. J Biol Chem 287:9429–9440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan P, Clark PM, Mason DE, Peters EC, Hsieh-Wilson LC, Baltimore D (2013) Activation of the transcriptional function of the NF-kappaB protein c-Rel by O-GlcNAc glycosylation. Sci Signal 6:ra75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramos-Morales F, Romero F, Schweighoffer F, Bismuth G, Camonis J, Tortolero M, Fischer S (1995) The proline-rich region of Vav binds to Grb2 and Grb3-3. Oncogene 11:1665–1669

    CAS  PubMed  Google Scholar 

  • Rao S, Gerondakis S, Woltring D, Shannon MF (2003) c-Rel is required for chromatin remodeling across the IL-2 gene promoter. J Immunol 170:3724–3731

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Yokosuka T, Hashimoto-Tane A (2010) Dynamic regulation of T cell activation and co-stimulation through TCR-microclusters. FEBS Lett 584:4865–4871

    Article  CAS  PubMed  Google Scholar 

  • Sakr MA, Takino T, Domoto T, Nakano H, Wong RW, Sasaki M, Nakanuma Y, Sato H (2010) GI24 enhances tumor invasiveness by regulating cell surface membrane-type 1 matrix metalloproteinase. Cancer Sci 101:2368–2374

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Lockhart M, Graf B, Miller J (2008) Signals and sequences that control CD28 localization to the central region of the immunological synapse. J Immunol 181:7639–7648

    Article  CAS  PubMed  Google Scholar 

  • Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O’Connor E et al (2008) T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A 105:7797–7802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider H, Martin M, Agarraberes FA, Yin L, Rapoport I, Kirchhausen T, Rudd CE (1999) Cytolytic T lymphocyte-associated antigen-4 and the TCR zeta/CD3 complex, but not CD28, interact with clathrin adaptor complexes AP-1 and AP-2. J Immunol 163:1868–1879

    CAS  PubMed  Google Scholar 

  • Schneider H, Downey J, Smith A, Zinselmeyer BH, Rush C, Brewer JM, Wei B, Hogg N, Garside P, Rudd CE (2006) Reversal of the TCR stop signal by CTLA-4. Science 313:1972–1975

    Article  CAS  PubMed  Google Scholar 

  • Schwartz JC, Zhang X, Nathenson SG, Almo SC (2002) Structural mechanisms of costimulation. Nat Immunol 3:427–434

    Article  CAS  PubMed  Google Scholar 

  • Shapiro VS, Truitt KE, Imboden JB, Weiss A (1997) CD28 mediates transcriptional upregulation of the interleukin-2 (IL-2) promoter through a composite element containing the CD28RE and NF-IL-2B AP-1 sites. Mol Cell Biol 17:4051–4058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheppard KA, Fitz LJ, Lee JM, Benander C, George JA, Wooters J, Qiu Y, Jussif JM, Carter LL, Wood CR et al (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574:37–41

    Article  CAS  PubMed  Google Scholar 

  • Sica GL, Choi IH, Zhu G, Tamada K, Wang SD, Tamura H, Chapoval AI, Flies DB, Bajorath J, Chen L (2003) B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 18:849–861

    Article  CAS  PubMed  Google Scholar 

  • Smith KM, Brewer JM, Webb P, Coyle AJ, Gutierrez-Ramos C, Garside P (2003) Inducible costimulatory molecule-B7-related protein 1 interactions are important for the clonal expansion and B cell helper functions of naive, Th1, and Th2 T cells. J Immunol 170:2310–2315

    Article  CAS  PubMed  Google Scholar 

  • Sonkoly E, Janson P, Majuri ML, Savinko T, Fyhrquist N, Eidsmo L, Xu N, Meisgen F, Wei T, Bradley M et al (2010) MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. J Allergy Clin Immunol 126(581–589):e581–e520

    Article  CAS  Google Scholar 

  • Stamper CC, Zhang Y, Tobin JF, Erbe DV, Ikemizu S, Davis SJ, Stahl ML, Seehra J, Somers WS, Mosyak L (2001) Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature 410:608–611

    Article  CAS  PubMed  Google Scholar 

  • Staron MM, Gray SM, Marshall HD, Parish IA, Chen JH, Perry CJ, Cui G, Li MO, Kaech SM (2014) The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection. Immunity 41:802–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stojanovic A, Fiegler N, Brunner-Weinzierl M, Cerwenka A (2014) CTLA-4 is expressed by activated mouse NK cells and inhibits NK Cell IFN-gamma production in response to mature dendritic cells. J Immunol 192:4184–4191

    Article  CAS  PubMed  Google Scholar 

  • Suh WK, Gajewska BU, Okada H, Gronski MA, Bertram EM, Dawicki W, Duncan GS, Bukczynski J, Plyte S, Elia A et al (2003) The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat Immunol 4:899–906

    Article  CAS  PubMed  Google Scholar 

  • Suh WK, Wang S, Duncan GS, Miyazaki Y, Cates E, Walker T, Gajewska BU, Deenick E, Dawicki W, Okada H et al (2006) Generation and characterization of B7-H4/B7S1/B7x-deficient mice. Mol Cell Biol 26:6403–6411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun MY, Richards S, Prasad DVR, Mai XM, Rudensky A, Dong C (2002) Characterization of mouse and human B7-H3 genes. J Immunol 168:6294–6297

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Fu F, Gu W, Yan R, Zhang G, Shen Z, Zhou Y, Wang H, Shen B, Zhang X (2011) Origination of new immunological functions in the costimulatory molecule B7-H3: the role of exon duplication in evolution of the immune system. PLoS One 6:e24751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tafuri A, Shahinian A, Bladt F, Yoshinaga SK, Jordana M, Wakeham A, Boucher LM, Bouchard D, Chan VS, Duncan G et al (2001) ICOS is essential for effective T-helper-cell responses. Nature 409:105–109

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192:303–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan C, Wei L, Vistica BP, Shi G, Wawrousek EF, Gery I (2014) Phenotypes of Th lineages generated by the commonly used activation with anti-CD3/CD28 antibodies differ from those generated by the physiological activation with the specific antigen. Cell Mol Immunol 11:305–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavano R, Contento RL, Baranda SJ, Soligo M, Tuosto L, Manes S, Viola A (2006) CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat Cell Biol 8:1270–1276

    Article  CAS  PubMed  Google Scholar 

  • Terawaki S, Chikuma S, Shibayama S, Hayashi T, Yoshida T, Okazaki T, Honjo T (2011) IFN-alpha directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. J Immunol 186:2772–2779

    Article  CAS  PubMed  Google Scholar 

  • Thomas RM, Gao L, Wells AD (2005) Signals from CD28 induce stable epigenetic modification of the IL-2 promoter. J Immunol 174:4639–4646

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511

    Article  CAS  PubMed  Google Scholar 

  • Valk E, Leung R, Kang H, Kaneko K, Rudd CE, Schneider H (2006) T cell receptor-interacting molecule acts as a chaperone to modulate surface expression of the CTLA-4 coreceptor. Immunity 25:807–821

    Article  CAS  PubMed  Google Scholar 

  • van der Merwe PA, Davis SJ (2003) Molecular interactions mediating T cell antigen recognition. Annu Rev Immunol 21:659–684

    Article  PubMed  CAS  Google Scholar 

  • van der Merwe PA, Bodian DL, Daenke S, Linsley P, Davis SJ (1997) CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med 185:393–403

    Article  PubMed  PubMed Central  Google Scholar 

  • Victora GD, Nussenzweig MC (2012) Germinal centers. Annu Rev Immunol 30:429–457

    Article  CAS  PubMed  Google Scholar 

  • Vigdorovich V, Ramagopal UA, Lazar-Molnar E, Sylvestre E, Lee JS, Hofmeyer KA, Zang X, Nathenson SG, Almo SC (2013) Structure and T cell inhibition properties of B7 family member, B7-H3. Structure 21:707–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayakrishnan L, Slavik JM, Illes Z, Greenwald RJ, Rainbow D, Greve B, Peterson LB, Hafler DA, Freeman GJ, Sharpe AH et al (2004) An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity 20:563–575

    Article  CAS  PubMed  Google Scholar 

  • Vogt L, Schmitz N, Kurrer MO, Bauer M, Hinton HI, Behnke S, Gatto D, Sebbel P, Beerli RR, Sonderegger I et al (2006) VSIG4, a B7 family-related protein, is a negative regulator of T cell activation. J Clin Invest 116:2817–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walunas TL, Bakker CY, Bluestone JA (1996) CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 183:2541–2550

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y, Lu LF, Gondek D, Wang Y, Fava RA et al (2011) VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J Exp Med 208:577–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wu G, Manick B, Hernandez V, Renelt M, Erickson C, Guan J, Singh R, Rollins S, Solorz A et al (2019) VSIG-3 as a ligand of VISTA inhibits human T-cell function. Immunology 156:74–85

    Article  CAS  PubMed  Google Scholar 

  • Watts TH (2010) Staying alive: T cell costimulation, CD28, and Bcl-xL. J Immunol 185:3785–3787

    Article  CAS  PubMed  Google Scholar 

  • Weiss A, Manger B, Imboden J (1986) Synergy between the T3/antigen receptor complex and Tp44 in the activation of human T cells. J Immunol 137:819–825

    CAS  PubMed  Google Scholar 

  • Wilson EH, Zaph C, Mohrs M, Welcher A, Siu J, Artis D, Hunter CA (2006) B7RP-1-ICOS interactions are required for optimal infection-induced expansion of CD4+ Th1 and Th2 responses. J Immunol 177:2365–2372

    Article  CAS  PubMed  Google Scholar 

  • Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275

    Article  CAS  PubMed  Google Scholar 

  • Witsch EJ, Peiser M, Hutloff A, Buchner K, Dorner BG, Jonuleit H, Mages HW, Kroczek RA (2002) ICOS and CD28 reversely regulate IL-10 on re-activation of human effector T cells with mature dendritic cells. Eur J Immunol 32:2680–2686

    Article  CAS  PubMed  Google Scholar 

  • Wong SC, Oh E, Ng CH, Lam KP (2003) Impaired germinal center formation and recall T-cell-dependent immune responses in mice lacking the costimulatory ligand B7-H2. Blood 102:1381–1388

    Article  CAS  PubMed  Google Scholar 

  • Wu YQ, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, Bates DL, Guo L, Han AD, Ziegler SF et al (2006) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126:375–387

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Yu S, Zhu B, Bedoret D, Bu X, Francisco LM, Hua P, Duke-Cohan JS, Umetsu DT, Sharpe AH et al (2014) RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. J Exp Med 211:943–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, Shin T, Tsuchiya H, Pardoll DM, Okumura K et al (2002) Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 169:5538–5545

    Article  CAS  PubMed  Google Scholar 

  • Ying H, Yang L, Qiao G, Li Z, Zhang L, Yin F, Xie D, Zhang J (2010) Cutting edge: CTLA-4--B7 interaction suppresses Th17 cell differentiation. J Immunol 185:1375–1378

    Article  CAS  PubMed  Google Scholar 

  • Yokosuka T, Kobayashi W, Sakata-Sogawa K, Takamatsu M, Hashimoto-Tane A, Dustin ML, Tokunaga M, Saito T (2008) Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 29:589–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T (2012) Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209:1201–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon KW, Byun S, Kwon E, Hwang SY, Chu K, Hiraki M, Jo SH, Weins A, Hakroush S, Cebulla A et al (2015) Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science 349:1261669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshinaga SK, Whoriskey JS, Khare SD, Sarmiento U, Guo J, Horan T, Shih G, Zhang M, Coccia MA, Kohno T et al (1999) T-cell co-stimulation through B7RP-1 and ICOS. Nature 402:827–832

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaga SK, Zhang M, Pistillo J, Horan T, Khare SD, Miner K, Sonnenberg M, Boone T, Brankow D, Dai T et al (2000) Characterization of a new human B7-related protein: B7RP-1 is the ligand to the co-stimulatory protein ICOS. Int Immunol 12:1439–1447

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Yang BH, Dong Y, Yamamura A, Fu W (2017) CRIg, a tissue-resident macrophage specific immune checkpoint molecule, promotes immunological tolerance in NOD mice, via a dual role in effector and regulatory T cells. elife 6:e29540

    Article  PubMed  PubMed Central  Google Scholar 

  • Zang X, Loke P, Kim J, Murphy K, Waitz R, Allison JP (2003) B7x: a widely expressed B7 family member that inhibits T cell activation. Proc Natl Acad Sci U S A 100:10388–10392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Schwartz JC, Almo SC, Nathenson SG (2003) Crystal structure of the receptor-binding domain of human B7-2: insights into organization and signaling. Proc Natl Acad Sci U S A 100:2586–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Hou J, Shi J, Yu G, Lu B, Zhang X (2008) Soluble CD276 (B7-H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum. Immunology 123:538–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao R, Chinai JM, Buhl S, Scandiuzzi L, Ray A, Jeon H, Ohaegbulam KC, Ghosh K, Zhao A, Scharff MD et al (2013) HHLA2 is a member of the B7 family and inhibits human CD4 and CD8 T-cell function. Proc Natl Acad Sci U S A 110:9879–9884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY (2007) Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445:936–940

    Article  CAS  PubMed  Google Scholar 

  • Zhong X, Bai C, Gao W, Strom TB, Rothstein TL (2004) Suppression of expression and function of negative immune regulator PD-1 by certain pattern recognition and cytokine receptor signals associated with immune system danger. Int Immunol 16:1181–1188

    Article  CAS  PubMed  Google Scholar 

  • Zhong X, Tumang JR, Gao W, Bai C, Rothstein TL (2007) PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for V(H)11/V(H)12 and phosphatidylcholine binding. Eur J Immunol 37:2405–2410

    Article  CAS  PubMed  Google Scholar 

  • Zhu G, Augustine MM, Azuma T, Luo L, Yao S, Anand S, Rietz AC, Huang J, Xu H, Flies AS et al (2009) B7-H4-deficient mice display augmented neutrophil-mediated innate immunity. Blood 113:1759–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Yao S, Iliopoulou BP, Han X, Augustine MM, Xu H, Phennicie RT, Flies SJ, Broadwater M, Ruff W et al (2013) B7-H5 costimulates human T cells via CD28H. Nat Commun 4:2043

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigenori Nagai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagai, S., Azuma, M. (2019). The CD28–B7 Family of Co-signaling Molecules. In: Azuma, M., Yagita, H. (eds) Co-signal Molecules in T Cell Activation. Advances in Experimental Medicine and Biology, vol 1189. Springer, Singapore. https://doi.org/10.1007/978-981-32-9717-3_2

Download citation

Publish with us

Policies and ethics