Skip to main content

Advertisement

Log in

The Toll-like receptors: analysis by forward genetic methods

  • Review
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Many genes, and conceivably most genes, are constitutively expressed yet have conditional functions. Their products are utilized only under special circumstances, and enforce homeostatic regulation. Mutations do not disclose the function of such genes unless the proper conditions are applied. The genes that encode the Toll-like receptors (TLRs) fall into this category. The TLRs represent the principal sensors of infection in mammals. Absent infection, mammals have little need for the TLRs; they are essential only when microbes gain access to the interior milieu of the host. The function of the TLRs in mammals was first disclosed by a spontaneous mutation in a locus called Lps, when it was shown by positional cloning to be identical to Tlr4. Random germline mutagenesis has since permitted an estimate of the total number of proteins required for TLR signaling to the level of tumor necrosis factor (TNF) synthesis and activity, and has also shown that these sensors are extremely broad in their ability to detect microbes. Ultimately, the TLRs are responsible for most infection-related phenomena, both good and bad. These include the development of fever, shock, and tissue injury, but also the activation of innate and adaptive effector mechanisms that lead to the elimination of microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adye JC, Springer GF, Murthy JR (1973) On the nature and function of the lipopolysaccharide receptor from human erythrocytes. Z Immunitatsforsch Exp Klin Immunol 144:491–496

    PubMed  CAS  Google Scholar 

  • Akira S (2003) Toll-like receptor signaling. J Biol Chem 278:38105–38108

    Article  PubMed  CAS  Google Scholar 

  • Anderson KV, Bokla L, Nusslein-Volhard C (1985) Establishment of dorsal–ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 42:791–798

    Article  PubMed  CAS  Google Scholar 

  • Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430:257–263

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Rietschel ET (2003) Timeline: innate immune sensing and its roots: the story of endotoxin 1. Nat Rev Immunol 3:169–176

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Milsark IW, Cerami A (1985) Passive immunization against cachectin/tumor necrosis factor (TNF) protects mice from the lethal effect of endotoxin. Science 229:869–871

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Crozat K, Koziol JA, Georgel P (2005) Genetic dissection of innate immunity to infection: the mouse cytomegalovirus model. Curr Opin Immunol 17:36–43

    Article  PubMed  CAS  Google Scholar 

  • Biswas C, Mandal C (1999) The role of amoebocytes in endotoxin-mediated coagulation in the innate immunity of Achatina fulica snails. Scand J Immunol 49:131–138

    Article  PubMed  CAS  Google Scholar 

  • Breiman A, Grandvaux N, Lin R, Ottone C, Akira S, Yoneyama M, Fujita T, Hiscott J, Meurs EF (2005) Inhibition of RIG-I-dependent signaling to the interferon pathway during hepatitis C virus expression and restoration of signaling by IKKepsilon. J Virol 79:3969–3978

    Article  PubMed  CAS  Google Scholar 

  • Burzyn D, Rassa JC, Kim D, Nepomnaschy I, Ross SR, Piazzon I (2004) Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus. J Virol 78:576–584

    Article  PubMed  CAS  Google Scholar 

  • Cannon JP, Haire RN, Pancer Z, Mueller MG, Skapura D, Cooper MD, Litman GW (2005) Variable domains and a VpreB-like molecule are present in a jawless vertebrate. Immunogenetics 56:924–929

    Article  PubMed  CAS  Google Scholar 

  • Car BD, Eng VM, Schnyder B, Ozmen L, Huang S, Gallay P, Heumann D, Aguet M, Ryffel B (1994) Interferon gamma receptor deficient mice are resistant to endotoxic shock. J Exp Med 179:1437–1444

    Article  PubMed  CAS  Google Scholar 

  • Chuang TH, Ulevitch RJ (2000) Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw 11:372–378

    PubMed  CAS  Google Scholar 

  • Chuang T, Ulevitch RJ (2001) Identification of hTLR10: a novel human toll-like receptor preferentially expressed in immune cells. Biochim Biophys Acta 1518:157–161

    PubMed  CAS  Google Scholar 

  • Concepcion D, Seburn KL, Wen G, Frankel WN, Hamilton BA (2004) Mutation rate and predicted phenotypic target sizes in ethylnitrosourea-treated mice 1. Genetics 168:953–959

    Article  PubMed  CAS  Google Scholar 

  • Condie RM, Zak SJ, Good RA (1955) Effect of meningococcal endotoxin on the immune response. Proc Soc Exp Biol Med 90:355–360

    PubMed  CAS  Google Scholar 

  • Coutinho A, Forni L, Melchers F, Watanabe T (1977) Genetic defect in responsiveness to the B cell mitogen lipopolysaccharide. Eur J Immunol 7:325–328

    Article  PubMed  CAS  Google Scholar 

  • Coutinho A, Forni L, Watanabe T (1978) Genetic and functional characterization of an antiserum to the lipid A-specific triggering receptor on murine B lymphocytes. Eur J Immunol 8:63–67

    Article  PubMed  CAS  Google Scholar 

  • Dao T, Ohashi K, Kayano T, Kurimoto M, Okamura H (1996) Interferon-gamma-inducing factor, a novel cytokine, enhances Fas ligand-mediated cytotoxicity of murine T helper 1 cells. Cell Immunol 173:230–235

    Article  PubMed  CAS  Google Scholar 

  • Davidoff D, Fine J, Koven IH, Schweinburg FB (1956) Host resistance to bacteria in hemorrhagic shock. VI. Effect of endotoxin on antibacterial defense. Proc Soc Exp Biol Med 92:662–667

    PubMed  CAS  Google Scholar 

  • De Vries JE, Vyth-Dreese FA, Figdor CG, Spits H, Leemans JM, Bont WS (1983) Induction of phenotypic differentiation, interleukin 2 production, and PHA responsiveness of “immature” human thymocytes by interleukin 1 and phorbol ester. J Immunol 131:201–206

    PubMed  Google Scholar 

  • Du X, Poltorak A, Wei Y, Beutler B (2000) Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw 11:362–371

    PubMed  CAS  Google Scholar 

  • Dubos RJ, Schaedler RW (1959) Effect of nutrition on the resistance of mice to endotoxin and on the bactericidal power of their tissues. J Exp Med 110:935–950

    Article  PubMed  CAS  Google Scholar 

  • Forni L, Coutinho A (1978) An antiserum which recognizes lipopolysaccharide-reactive B cells in the mouse. Eur J Immunol 8:56–62

    Article  PubMed  CAS  Google Scholar 

  • Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM (2003) Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197:1107–1117

    Article  PubMed  CAS  Google Scholar 

  • Ghayur T, Banerjee S, Hugunin M, Butler D, Herzog L, Carter A, Quintal L, Sekut L, Talanian R, Paskind M, Wong W, Kamen R, Tracey D, Allen H (1997) Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature 386:619–623

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Kuida K, Tsutsui H, Ku G, Hsiao K, Fleming MA, Hayashi N, Higashino K, Okamura H, Nakanishi K, Kurimoto M, Tanimoto T, Flavell RA, Sato V, Harding MW, Livingston DJ, Su MS (1997) Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science 275:206–209

    Article  PubMed  CAS  Google Scholar 

  • Hagberg L, Hull R, Hull S, McGhee JR, Michalek SM, Svanborg Eden C (1984) Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect Immun 46:839–844

    PubMed  CAS  Google Scholar 

  • Haynes LM, Moore DD, Kurt-Jones EA, Finberg RW, Anderson LJ, Tripp RA (2001) Involvement of Toll-like receptor 4 in innate immunity to respiratory syncytial virus. J Virol 75:10730–10737

    Article  PubMed  CAS  Google Scholar 

  • Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, Goode J, Lin P, Mann N, Mudd S, Crozat K, Sovath S, Han J, Beutler B (2003a) Identification of Lps2 as a key transducer of MyD88-independent TIR signaling. Nature 424:743–748

    Article  PubMed  CAS  Google Scholar 

  • Hoebe K, Jannsen EM, Kim SO, Alexopoulou L, Flavell RA, Han J, Beutler B (2003b) Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat Immunol 4:1223–1229

    Article  PubMed  CAS  Google Scholar 

  • Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, Sovath S, Shamel L, Hartung T, Zahringer U, Beutler B (2005) CD36 is a sensor of diacylglycerides. Nature 433:523–527

    Article  PubMed  CAS  Google Scholar 

  • Howard JG, Biozzi G, Halpern BN, Stuffel C, Mouton D (1959) The effect of mycobacterium tuberculosis (BCG) infection on the resistance of mice to bacterial endotoxin and salmonella enteritidis infection. Br J Exp Pathol 40:281–290

    PubMed  CAS  Google Scholar 

  • Iwanaga S (2002) The molecular basis of innate immunity in the horseshoe crab. Curr Opin Immunol 14:87–95

    Article  PubMed  CAS  Google Scholar 

  • Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology 20. Cold Spring Harbor Symp Quant Biol 54(Pt 1):1–13

    PubMed  CAS  Google Scholar 

  • Jensen SB, Mergenhagen SE (1964) Influence of endotoxin on resistance of mice to intraperitoneal infection with human oral bacteria. Arch Oral Biol 11:229–239

    Article  PubMed  CAS  Google Scholar 

  • Jiang Z, Georgel P, Du X, Shamel L, Sovath S, Mudd S, Huber M, Kalis C, Keck S, Galanos C, Freudenberg M, Beutler B (2005) CD14 is required for MyD88-independent LPS signaling. Nat Immunol 6:565–570

    Article  PubMed  CAS  Google Scholar 

  • Jude BA, Pobezinskaya Y, Bishop J, Parke S, Medzhitov RM, Chervonsky AV, Golovkina TV (2003) Subversion of the innate immune system by a retrovirus. Nat Immunol 4:573–578

    Article  PubMed  CAS  Google Scholar 

  • Justice MJ, Noveroske JK, Weber JS, Zheng B, Bradley A (1999) Mouse ENU mutagenesis. Hum Mol Genet 8:1955–1963

    Article  PubMed  CAS  Google Scholar 

  • Justice MJ, Carpenter DA, Favor J, Neuhauser-Klaus A, Hrabe de Angelis M, Soewarto D, Moser A, Cordes S, Miller D, Chapman V, Weber JS, Rinchik EM, Hunsicker PR, Russell WL, Bode VC (2000) Effects of ENU dosage on mouse strains. Mamm Genome 11:484–488

    Article  PubMed  CAS  Google Scholar 

  • Karaghiosoff M, Steinborn R, Kovarik P, Kriegshauser G, Baccarini M, Donabauer B, Reichart U, Kolbe T, Bogdan C, Leanderson T, Levy D, Decker T, Muller M (2003) Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat Immunol 4:471–477

    Article  PubMed  CAS  Google Scholar 

  • Kim JI, Lee CJ, Jin MS, Lee CH, Paik SG, Lee H, Lee JO (2005) Crystal structure of CD14 and its implications for lipopolysaccharide signaling. J Biol Chem

  • Kobe B, Deisenhofer J (1993) Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature 366:751–756

    Article  PubMed  CAS  Google Scholar 

  • Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, Walsh EE, Freeman MW, Golenbock DT, Anderson LJ, Finberg RW (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1:398–401

    Article  PubMed  CAS  Google Scholar 

  • Langendorff H, Langendorff M, Steinbach KH, Weckesser J (1971) Comparative studies of several bacterial lipopolysaccharides with regard to their radioresistance-increasing action. Strahlentherapie 141:214–220

    PubMed  CAS  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983

    Article  PubMed  CAS  Google Scholar 

  • Manukyan M, Triantafilou K, Triantafilou M, Mackie A, Nilsen N, Espevik T, Wiesmuller KH, Ulmer AJ, Heine H (2005) Binding of lipopeptide to CD14 induces physical proximity of CD14, TLR2 and TLR1. Eur J Immunol 35:911–921

    Article  PubMed  CAS  Google Scholar 

  • Matsuzawa T (1964) Radioprotection induced by bacterial toxins1. Radioprotection induced by bacterial endotoxin in x-irradiated germ-free mice. Nippon Igaku Hoshasen Gakkai Zasshi 24:242–245

    PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway CA Jr (2000) How does the immune system distinguish self from nonself? Semin Immunol 12:185–188

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  PubMed  CAS  Google Scholar 

  • Melchers F, Braun V, Galanos C (1975) The lipoprotein of the outer membrane of Escherichia coli: a B-lymphocyte mitogen. J Exp Med 142:473–482

    Article  PubMed  CAS  Google Scholar 

  • Mergenhagen SE, Schiffmann E, Martin GR, Jensen SB (1963) Stimulation of resistance to infection by lipoid derived from Neisseria meningitidis endotoxin. J Infect Dis 113:52–58

    PubMed  CAS  Google Scholar 

  • Michael JG, Massell BF (1962) Factors involved in the induction of non-specific resistance to streptococcal infection in mice by endotoxin. J Exp Med 116:101–107

    Article  PubMed  CAS  Google Scholar 

  • Michalek SM, Moore RN, McGhee JR, Rosenstreich DL, Mergenhagen SE (1980) The primary role of lymphoreticular cells in the mediation of host responses to bacterial endotoxin. J Infect Dis 141:55–63

    PubMed  CAS  Google Scholar 

  • Nadel EM, Young B, Hilgar A, Mandell A (1961) Effects of adreaocorticotropin and endotoxin on adrenal stimulation and resistance to infection. Am J Physiol 201:551–553

    PubMed  CAS  Google Scholar 

  • Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, Kitamura T, Kosugi A, Kimoto M, Miyake K (2002) Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3:667–672

    PubMed  CAS  Google Scholar 

  • Nygren H, Dahlen G, Moller G (1979) Bacterial lipopolysaccharides bind selectively to lymphocytes from lipopolysaccharide high-responder mouse strains. Scand J Immunol 10:555–561

    Article  PubMed  CAS  Google Scholar 

  • O'Brien AD, Rosenstreich DL, Scher I, Campbell GH, MacDermott RP, Formal SB (1980) Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J Immunol 124:20–24

    PubMed  Google Scholar 

  • Otten LA, Finke D, Acha-Orbea H (2002) Can MMTV exploit TLR4? Trends Microbiol 10:303–305

    Article  PubMed  CAS  Google Scholar 

  • Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A 97:13766–13771

    Article  PubMed  CAS  Google Scholar 

  • Ozmen L, Pericin M, Hakimi J, Chizzonite RA, Wysocka M, Trinchieri G, Gately M, Garotta G (1994) Interleukin 12, interferon gamma, and tumor necrosis factor a are the key cytokines of the generalized Shwartzman reaction. J Exp Med 180:907–915

    Article  PubMed  CAS  Google Scholar 

  • Pancer Z, Amemiya CT, Ehrhardt GR, Ceitlin J, Gartland GL, Cooper MD (2004a) Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430:174–180

    Article  PubMed  CAS  Google Scholar 

  • Pancer Z, Mayer WE, Klein J, Cooper MD (2004b) Prototypic T cell receptor and CD4-like coreceptor are expressed by lymphocytes in the agnathan sea lamprey. Proc Natl Acad Sci U S A 101:13273–13278

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer R (1892) Untersuchungen über das Choleragift. Z Hyg 11:393–412

    Article  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu M-Y, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg MA, Ricciardi-Castagnoli P, Layton B, Beutler B (1998a) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  PubMed  CAS  Google Scholar 

  • Poltorak A, Smirnova I, He XL, Liu MY, Van Huffel C, McNally O, Birdwell D, Alejos E, Silva M, Du X, Thompson P, Chan EKL, Ledesma J, Roe B, Clifton S, Vogel SN, Beutler B (1998b) Genetic and physical mapping of the Lps locus—identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Diseases 24:340–355

    Article  CAS  Google Scholar 

  • Rassa JC, Meyers JL, Zhang Y, Kudaravalli R, Ross SR (2002) Murine retroviruses activate B cells via interaction with Toll-like receptor 4. Proc Natl Acad Sci U S A 99:2281–2286

    Article  PubMed  CAS  Google Scholar 

  • Rosenstreich DL, Weinblatt AC, O'Brien AD (1982) Genetic control of resistance to infection in mice. CRC Crit Rev Immunol 3:263–330

    CAS  Google Scholar 

  • Rotta J, Prendergast TJ, Karakawa WW, Harmon CK, Krause RM (1965) Enhanced resistance to streptococcal infection induced in mice by cell wall mucopeptide. J Exp Med 122:877–890

    Article  PubMed  CAS  Google Scholar 

  • Russo M, Lutton JD (1977) Decreased in vivo and in vitro colony stimulating activity responses to bacterial lipopolysaccharide in C3H/HeJ mice. J Cell Physiol 92:303–307

    Article  PubMed  CAS  Google Scholar 

  • Salvin SB, Peterson RD, Good RA (1965) The role of the thymus in resistance to infection and endotoxin toxicity. J Lab Clin Med 65:1004–1022

    PubMed  CAS  Google Scholar 

  • Schneider DS, Hudson KL, Lin TY, Anderson KV (1991) Dominant and recessive mutations define functional domains of toll, a transmembrane protein required for dorsal–ventral polarity in the Drosophila embryo. Genes Dev 5:797–807

    Article  PubMed  CAS  Google Scholar 

  • Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on toll-like receptor 4. J Exp Med 189(11):1777–1782

    Article  Google Scholar 

  • Smirnova I, Poltorak A, Chan EKL, McBride C, Beutler B (2000) Phylogenetic variation and polymorphism at the Toll-like receptor 4 locus (TLR4). Genome Biol 1:1–10

    Article  PubMed  Google Scholar 

  • Smirnova I, Hamblin M, McBride C, Beutler B, Di Rienzo A (2001) Excess of rare amino acid polymorphisms in the Toll-like receptor 4 in humans. Genetics 158:1657–1664

    PubMed  CAS  Google Scholar 

  • Smith WW, Alderman IM, Gillespie RE (1958) Resistance to experimental infection and mobilization of granulocytes in irradiated mice treated with bacterial endotoxin. Am J Physiol 192:263–267

    PubMed  CAS  Google Scholar 

  • Snyder SL, Walden TL, Patchen ML, MacVittie TJ, Fuchs P (1986) Radioprotective properties of detoxified lipid A from Salmonella minnesota R595. Radiat Res 107:107–114

    Article  PubMed  CAS  Google Scholar 

  • Springer GF, Adye JC (1975) Endotoxin-binding substances from human leukocytes and platelets. Infect Immun 12:978–986

    PubMed  CAS  Google Scholar 

  • Springer GF, Adye JC, Bezkorovainy A, Murthy JR (1973) Functional aspects and nature of the lipopolysaccharide-receptor of human erythrocytes. J Infect Dis 128(Suppl-12)

  • Springer GF, Adye JC, Bezkorovainy A, Jirgensons B (1974) Properties and activity of the lipopolysaccharide-receptor from human erythrocytes. Biochemistry 13:1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Sultzer BM, Freedman HH (1962) The stimulation of non-specific host resistance to infection by chemically modified endotoxin. J Exp Med 116:943–956

    Article  PubMed  CAS  Google Scholar 

  • Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K, Mudd S, Shamel L, Sovath S, Goode J, Alexopoulou L, Flavell RA, Beutler B (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection 3. Proc Natl Acad Sci U S A 101:3516–3521

    Article  PubMed  CAS  Google Scholar 

  • Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T, Kano S, Honda K, Ohba Y, Mak TW, Taniguchi T (2005) Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434:243–249

    Article  PubMed  CAS  Google Scholar 

  • Tully JG, Gaines S, Tigertt WD (1965) Studies on infection and immunity in experimental typhoid fever. VI. Response of chimpanzees to endotoxin and the effect of tolerance on resistance to oral challenge. J Infect Dis 115:445–455

    PubMed  CAS  Google Scholar 

  • Washida S (1978a) Endotoxin receptor site. I. Binding of endotoxin to platelets. Acta Med Okayama 32:159–167

    PubMed  CAS  Google Scholar 

  • Washida S (1978b) Endotoxin receptor site. II. Specificity of endotoxin receptor of platelets and sensitivity to endotoxin in vivo. Acta Med Okayama 32:217–223

    PubMed  CAS  Google Scholar 

  • Whitby JL, Michael JG, Woods MW, Landy M (1961) Symposium on bacterial endotoxins. II. Possible mechanisms whereby endotoxins evoke increased nonspecific resistance to infection. Bacteriol Rev 25:437–446

    PubMed  CAS  Google Scholar 

  • Wysocka M, Kubin M, Vieira LQ, Ozmen L, Garotta G, Scott P, Trinchieri G (1995) Interleukin-12 is required for interferon-gamma production and lethality in lipopolysaccharide-induced shock in mice. Eur J Immunol 25:672–676

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S (2003a) Role of adapter TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301:640–643

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K, Akira S (2003b) TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4:1144–1150

    Article  PubMed  CAS  Google Scholar 

  • Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, Sher A (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science

  • Yauch LE, Mansour MK, Shoham S, Rottman JB, Levitz SM (2004) Involvement of CD14, toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect Immun 72:5373–5382

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S (2004) A Toll-like receptor that prevents infection by uropathogenic bacteria. Science 303:1522–1526

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Beutler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beutler, B. The Toll-like receptors: analysis by forward genetic methods. Immunogenetics 57, 385–392 (2005). https://doi.org/10.1007/s00251-005-0011-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-005-0011-3

Keywords

Navigation