Skip to main content

The TNF–TNFR Family of Co-signal Molecules

  • Chapter
  • First Online:
Co-signal Molecules in T Cell Activation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1189))

Abstract

Costimulatory signals initiated by the interaction between the tumor necrosis factor (TNF) ligand and cognate TNF receptor (TNFR) superfamilies promote clonal expansion, differentiation, and survival of antigen-primed CD4+ and CD8+ T cells and have a pivotal role in T-cell-mediated adaptive immunity and diseases. Accumulating evidence in recent years indicates that costimulatory signals via the subset of the TNFR superfamily molecules, OX40 (TNFRSF4), 4-1BB (TNFRSF9), CD27, DR3 (TNFRSF25), CD30 (TNFRSF8), GITR (TNFRSF18), TNFR2 (TNFRSF1B), and HVEM (TNFRSF14), which are constitutive or inducible on T cells, play important roles in protective immunity, inflammatory and autoimmune diseases, and tumor immunotherapy. In this chapter, we will summarize the findings of recent studies on these TNFR family of co-signaling molecules regarding their function at various stages of the T-cell response in the context of infection, inflammation, and cancer. We will also discuss how these TNFR co-signals are critical for immune regulation and have therapeutic potential for the treatment of T-cell-mediated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

antigen-presenting cell;

CAR:

chimeric antigen receptor

CMV:

cytomegalovirus

CTL:

cytotoxic T lymphocyte

CTLA-4:

cytotoxic T-lymphocyte-associated protein-4

DC:

dendritic cell

DcR3:

decoy receptor 3

DR3:

death receptor 3

EAE:

experimental autoimmune encephalomyelitis

EBV:

Epstein–Barr virus

GC:

germinal center

GITR:

glucocorticoid-induced TNFR family-related protein

GVHD:

graft-versus-host disease

HPV:

human papillomavirus

HVEM:

herpesvirus entry mediator

ICOS:

inducible T-cell costimulator

LCMV:

lymphocytic choriomeningitis virus

LIGHT:

homologous to lymphotoxins (LTs), inducible expression, which competes with herpes simplex virus glycoprotein D (HSV gD) for HVEM, a receptor expressed on T lymphocytes

mAb:

monoclonal antibody

MAPK:

mitogen-activated protein kinase

NF-κB:

nuclear factor-kappa B

PD-1:

programmed cell death-1

SLE:

systemic lupus erythematosus

TCR:

T-cell receptor

Tfh:

T follicular helper

Th1:

T-helper-1

Th17:

T-helper-17

Th2:

T-helper-2

Th9:

T-helper-9

TL1A:

TNF-like ligand 1A

TLR:

Toll-like receptor

TNF:

tumor necrosis factor

TNFR2:

tumor necrosis factor receptor 2

TNFRSF:

TNF receptor superfamily

TNFSF:

TNF superfamily

TRAF:

TNF receptor-associated factor

Treg cells:

Foxp3+ CD25+ CD4+ regulatory T cells

References

  • Abolhassani H, Edwards ES, Ikinciogullari A et al (2017) Combined immunodeficiency and Epstein-Barr virus-induced B cell malignancy in humans with inherited CD70 deficiency. J Exp Med 214:91–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756

    Article  CAS  PubMed  Google Scholar 

  • Ahrends T, Babala N, Xiao Y et al (2016) CD27 Agonism plus PD-1 blockade recapitulates CD4+ T-cell help in therapeutic anticancer vaccination. Cancer Res 76:2921–2931

    Article  CAS  PubMed  Google Scholar 

  • Atreya R, Zimmer M, Bartsch B et al (2011) Antibodies against tumor necrosis factor (TNF) induce T-cell apoptosis in patients with inflammatory bowel diseases via TNF receptor 2 and intestinal CD14(+) macrophages. Gastroenterology 141:2026–2038

    Article  CAS  PubMed  Google Scholar 

  • Bacher P, Heinrich F, Stervbo U et al (2016) Regulatory T cell specificity directs tolerance versus allergy against Aeroantigens in humans. Cell 167:1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Bartkowiak T, Curran MA (2015) 4-1BB agonists: multi-potent Potentiators of tumor immunity. Front Oncol 5:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartkowiak T, Singh S, Yang G et al (2015) Unique potential of 4-1BB agonist antibody to promote durable regression of HPV+ tumors when combined with an E6/E7 peptide vaccine. Proc Natl Acad Sci U S A 112:E5290–E5299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodmer JL, Schneider P, Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends Biochem Sci 27:19–26

    Article  CAS  PubMed  Google Scholar 

  • Brenner D, Blaser H, Mak TW (2015) Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 15:362–374

    Article  CAS  PubMed  Google Scholar 

  • Brown GR, Thiele DL (2000) Enhancement of MHC class I-stimulated alloresponses by TNF/TNF receptor (TNFR)1 interactions and of MHC class II-stimulated alloresponses by TNF/TNFR2 interactions. Eur J Immunol 30:2900–2907

    Article  CAS  PubMed  Google Scholar 

  • Buchan SL, Taraban VY, Slebioda TJ et al (2012) Death receptor 3 is essential for generating optimal protective CD4(+) T-cell immunity against Salmonella. Eur J Immunol 42:580–588

    Article  CAS  PubMed  Google Scholar 

  • Bullock TN (2017) Stimulating CD27 to quantitatively and qualitatively shape adaptive immunity to cancer. Curr Opin Immunol 45:82–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byun M, Ma CS, Akcay A et al (2013) Inherited human OX40 deficiency underlying classic Kaposi sarcoma of childhood. J Exp Med 210:1743–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calzascia T, Pellegrini M, Hall H et al (2007) TNF-alpha is critical for antitumor but not antiviral T cell immunity in mice. J Clin Invest 117:3833–3845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Nie Y, Xiao H et al (2016) TNFR2 expression by CD4 effector T cells is required to induce full-fledged experimental colitis. Sci Rep 6:32834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clouthier DL, Watts TH (2014) Cell-specific and context-dependent effects of GITR in cancer, autoimmunity, and infection. Cytokine Growth Factor Rev 25:91–106

    Article  CAS  PubMed  Google Scholar 

  • Clouthier DL, Watts TH (2015) TNFRs and control of chronic LCMV infection: implications for therapy. Trends Immunol 36:697–708

    Article  CAS  PubMed  Google Scholar 

  • Clouthier DL, Zhou AC, Watts TH (2014) Anti-GITR agonist therapy intrinsically enhances CD8 T cell responses to chronic lymphocytic choriomeningitis virus (LCMV), thereby circumventing LCMV-induced downregulation of costimulatory GITR ligand on APC. J Immunol 193:5033–5043

    Article  CAS  PubMed  Google Scholar 

  • Clouthier DL, Zhou AC, Wortzman ME et al (2015) GITR intrinsically sustains early type 1 and late follicular helper CD4 T cell accumulation to control a chronic viral infection. PLoS Pathog 11:e1004517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Croft M (2009) The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol 9:271–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft M (2010) Control of immunity by the TNFR-related molecule OX40 (CD134). Annu Rev Immunol 28:57–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft M (2014) The TNF family in T cell differentiation and function-unanswered questions and future directions. Semin Immunol 26:183–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft M, So T, Duan W et al (2009) The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev 229:173–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft M, Benedict CA, Ware CF (2013) Clinical targeting of the TNF and TNFR superfamilies. Nat Rev Drug Discov 12:147–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuzzocrea S, Ayroldi E, Di Paola R et al (2005) Role of glucocorticoid-induced TNF receptor family gene (GITR) in collagen-induced arthritis. FASEB J 19:1253–1265

    Article  CAS  PubMed  Google Scholar 

  • Eissner G, Kolch W, Scheurich P (2004) Ligands working as receptors: reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine Growth Factor Rev 15:353–366

    Article  CAS  PubMed  Google Scholar 

  • Faustman D, Davis M (2010) TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev Drug Discov 9:482–493

    Article  CAS  PubMed  Google Scholar 

  • Florido M, Borges M, Yagita H et al (2004) Contribution of CD30/CD153 but not of CD27/CD70, CD134/OX40L, or CD137/4-1BBL to the optimal induction of protective immunity to Mycobacterium avium. J Leukoc Biol 76:1039–1046

    Article  CAS  PubMed  Google Scholar 

  • Flynn R, Hutchinson T, Murphy KM et al (2013) CD8 T cell memory to a viral pathogen requires trans Cosignaling between HVEM and BTLA. PLoS One 8:e77991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchiwaki T, Sun X, Fujimura K et al (2011) The central role of CD30L/CD30 interactions in allergic rhinitis pathogenesis in mice. Eur J Immunol 41:2947–2954

    Article  CAS  PubMed  Google Scholar 

  • Gaspal F, Bekiaris V, Kim MY et al (2008) Critical synergy of CD30 and OX40 signals in CD4 T cell homeostasis and Th1 immunity to Salmonella. J Immunol 180:2824–2829

    Article  CAS  PubMed  Google Scholar 

  • Gaspal F, Withers D, Saini M et al (2011) Abrogation of CD30 and OX40 signals prevents autoimmune disease in FoxP3-deficient mice. J Exp Med 208:1579–1584

    Article  CAS  PubMed  Google Scholar 

  • Ha H, Han D, Choi Y (2009) TRAF-mediated TNFR-family signaling. Curr Protoc Immunol Suppl.87:Unit11.9D.1–Unit 11.9D.19

    Google Scholar 

  • Hayden MS, Ghosh S (2014) Regulation of NF-kappaB by TNF family cytokines. Semin Immunol 26:253–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendriks J, Gravestein LA, Tesselaar K et al (2000) CD27 is required for generation and long-term maintenance of T cell immunity. Nat Immunol 1:433–440

    Article  CAS  PubMed  Google Scholar 

  • Humphreys IR, de Trez C, Kinkade A et al (2007) Cytomegalovirus exploits IL-10-mediated immune regulation in the salivary glands. J Exp Med 204:1217–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii N, Takahashi T, Soroosh P et al (2010) OX40-OX40 ligand interaction in T-cell-mediated immunity and immunopathology. Adv Immunol 105:63–98

    Article  CAS  PubMed  Google Scholar 

  • Izawa K, Martin E, Soudais C et al (2017) Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med 214:73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquemin C, Schmitt N, Contin-Bordes C et al (2015) OX40 ligand contributes to human lupus pathogenesis by promoting T follicular helper response. Immunity 42:1159–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kafrouni MI, Brown GR, Thiele DL (2003) The role of TNF-TNFR2 interactions in generation of CTL responses and clearance of hepatic adenovirus infection. J Leukoc Biol 74:564–571

    Article  CAS  PubMed  Google Scholar 

  • Kanodia S, Da Silva DM, Karamanukyan T et al (2010) Expression of LIGHT/TNFSF14 combined with vaccination against human papillomavirus type 16 E7 induces significant tumor regression. Cancer Res 70:3955–3964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karin M, Gallagher E (2009) TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol Rev 228:225–240

    Article  CAS  PubMed  Google Scholar 

  • Kawalekar OU, O’Connor RS, Fraietta JA et al (2016) Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44:380–390

    Article  CAS  PubMed  Google Scholar 

  • Kim EY, Priatel JJ, Teh SJ et al (2006) TNF receptor type 2 (p75) functions as a costimulator for antigen-driven T cell responses in vivo. J Immunol 176:1026–1035

    Article  CAS  PubMed  Google Scholar 

  • Kim IK, Kim BS, Koh CH et al (2015) Glucocorticoid-induced tumor necrosis factor receptor-related protein co-stimulation facilitates tumor regression by inducing IL-9-producing helper T cells. Nat Med 21:1010–1017

    Article  CAS  PubMed  Google Scholar 

  • Kitchens WH, Dong Y, Mathews DV et al (2017) Interruption of OX40L signaling prevents costimulation blockade-resistant allograft rejection. JCI Insight 2:e90317

    Article  PubMed  PubMed Central  Google Scholar 

  • Laouar A, Haridas V, Vargas D et al (2005) CD70+ antigen-presenting cells control the proliferation and differentiation of T cells in the intestinal mucosa. Nat Immunol 6:698–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linch SN, McNamara MJ, Redmond WL (2015) OX40 agonists and combination immunotherapy: putting the pedal to the metal. Front Oncol 5:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Linch SN, Kasiewicz MJ, McNamara MJ et al (2016) Combination OX40 agonism/CTLA-4 blockade with HER2 vaccination reverses T-cell anergy and promotes survival in tumor-bearing mice. Proc Natl Acad Sci U S A 113:E319–E327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    Article  CAS  PubMed  Google Scholar 

  • Long AH, Haso WM, Shern JF et al (2015) 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 21:581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Xu X, Zhang B et al (2014) Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs. J Transl Med 12:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manocha M, Rietdijk S, Laouar A et al (2009) Blocking CD27-CD70 costimulatory pathway suppresses experimental colitis. J Immunol 183:270–276

    Article  CAS  PubMed  Google Scholar 

  • Mbanwi AN, Watts TH (2014) Costimulatory TNFR family members in control of viral infection: outstanding questions. Semin Immunol 26:210–219

    Article  CAS  PubMed  Google Scholar 

  • Mehta AK, Gracias DT, Croft M (2016) TNF activity and T cells. Cytokine 101:14–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meylan F, Davidson TS, Kahle E et al (2008) The TNF-family receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity 29:79–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meylan F, Richard AC, Siegel RM (2011) TL1A and DR3, a TNF family ligand-receptor pair that promotes lymphocyte costimulation, mucosal hyperplasia, and autoimmune inflammation. Immunol Rev 244:188–196

    Article  CAS  PubMed  Google Scholar 

  • Moran AE, Kovacsovics-Bankowski M, Weinberg AD (2013) The TNFRs OX40, 4-1BB, and CD40 as targets for cancer immunotherapy. Curr Opin Immunol 25:230–237

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SF, Soroosh P, Takahashi T et al (2008) OX40 costimulatory signals potentiate the memory commitment of effector CD8+ T cells. J Immunol 181:5990–6001

    Article  CAS  PubMed  Google Scholar 

  • Munitic I, Kuka M, Allam A et al (2013) CD70 deficiency impairs effector CD8 T cell generation and viral clearance but is dispensable for the recall response to lymphocytic choriomeningitis virus. J Immunol 190:1169–1179

    Article  CAS  PubMed  Google Scholar 

  • Nam SY, Kim YH, Do JS et al (2008) CD30 supports lung inflammation. Int Immunol 20:177–184

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Yajima T, Muta H et al (2005) A novel role of CD30/CD30 ligand signaling in the generation of long-lived memory CD8+ T cells. J Immunol 175:4627–4634

    Article  CAS  PubMed  Google Scholar 

  • Nolte MA, van Olffen RW, van Gisbergen KP et al (2009) Timing and tuning of CD27-CD70 interactions: the impact of signal strength in setting the balance between adaptive responses and immunopathology. Immunol Rev 229:216–231

    Article  CAS  PubMed  Google Scholar 

  • Pappu BP, Borodovsky A, Zheng TS et al (2008) TL1A-DR3 interaction regulates Th17 cell function and Th17-mediated autoimmune disease. J Exp Med 205:1049–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JJ, Anand S, Zhao Y et al (2012) Expression of anti-HVEM single-chain antibody on tumor cells induces tumor-specific immunity with long-term memory. Cancer Immunol Immunother 61:203–214

    Article  CAS  PubMed  Google Scholar 

  • Penaloza-MacMaster P, Ur Rasheed A, Iyer SS et al (2011) Opposing effects of CD70 costimulation during acute and chronic lymphocytic choriomeningitis virus infection of mice. J Virol 85:6168–6174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pobezinskaya YL, Choksi S, Morgan MJ et al (2011) The adaptor protein TRADD is essential for TNF-like ligand 1A/death receptor 3 signaling. J Immunol 186:5212–5216

    Article  CAS  PubMed  Google Scholar 

  • Polte T, Behrendt AK, Hansen G (2006) Direct evidence for a critical role of CD30 in the development of allergic asthma. J Allergy Clin Immunol 118:942–948

    Article  CAS  PubMed  Google Scholar 

  • Punit S, Dube PE, Liu CY et al (2015) Tumor necrosis factor receptor 2 restricts the pathogenicity of CD8(+) T cells in mice with colitis. Gastroenterology 149:993–1005

    Article  CAS  PubMed  Google Scholar 

  • Richard AC, Ferdinand JR, Meylan F et al (2015a) The TNF-family cytokine TL1A: from lymphocyte costimulator to disease co-conspirator. J Leukoc Biol 98:333–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard AC, Tan C, Hawley ET et al (2015b) The TNF-family ligand TL1A and its receptor DR3 promote T cell-mediated allergic immunopathology by enhancing differentiation and pathogenicity of IL-9-producing T cells. J Immunol 194:3567–3582

    Article  CAS  PubMed  Google Scholar 

  • Sakoda Y, Park JJ, Zhao Y et al (2011) Dichotomous regulation of GVHD through bidirectional functions of the BTLA-HVEM pathway. Blood 117:2506–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakoda Y, Nagai T, Murata S et al (2016) Pathogenic function of herpesvirus entry mediator in experimental autoimmune uveitis by induction of Th1-and Th17-type T cell responses. J Immunol 196:2947–2954

    Article  CAS  PubMed  Google Scholar 

  • Salek-Ardakani S, Moutaftsi M, Crotty S et al (2008) OX40 drives protective vaccinia virus-specific CD8 T cells. J Immunol 181:7969–7976

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Paulete AR, Labiano S, Rodriguez-Ruiz ME et al (2016) Deciphering CD137 (4-1BB) signaling in T-cell costimulation for translation into successful cancer immunotherapy. Eur J Immunol 46:513–522

    Article  CAS  PubMed  Google Scholar 

  • Schaer C, Hiltbrunner S, Ernst B et al (2011) HVEM signalling promotes colitis. PLoS One 6:e18495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaer DA, Murphy JT, Wolchok JD (2012) Modulation of GITR for cancer immunotherapy. Curr Opin Immunol 24:217–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shevach EM, Stephens GL (2006) The GITR-GITRL interaction: co-stimulation or contrasuppression of regulatory activity? Nat Rev Immunol 6:613–618

    Article  CAS  PubMed  Google Scholar 

  • Shinoda K, Sun X, Oyamada A et al (2015) CD30 ligand is a new therapeutic target for central nervous system autoimmunity. J Autoimmun 57:14–23

    Article  CAS  PubMed  Google Scholar 

  • Slebioda TJ, Rowley TF, Ferdinand JR et al (2011) Triggering of TNFRSF25 promotes CD8(+) T-cell responses and anti-tumor immunity. Eur J Immunol 41:2606–2611

    Article  CAS  PubMed  Google Scholar 

  • Snell LM, McPherson AJ, Lin GH et al (2010) CD8 T cell-intrinsic GITR is required for T cell clonal expansion and mouse survival following severe influenza infection. J Immunol 185:7223–7234

    Article  CAS  PubMed  Google Scholar 

  • Snell LM, Lin GH, McPherson AJ et al (2011) T-cell intrinsic effects of GITR and 4-1BB during viral infection and cancer immunotherapy. Immunol Rev 244:197–217

    Article  CAS  PubMed  Google Scholar 

  • So T, Croft M (2013) Regulation of PI-3-kinase and Akt signaling in T lymphocytes and other cells by TNFR family molecules. Front Immunol 4:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • So T, Lee SW, Croft M (2006) Tumor necrosis factor/tumor necrosis factor receptor family members that positively regulate immunity. Int J Hematol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  • So T, Lee SW, Croft M (2008) Immune regulation and control of regulatory T cells by OX40 and 4-1BB. Cytokine Growth Factor Rev 19:253–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • So T, Nagashima H, Ishii N (2015) TNF receptor-associated factor (TRAF) signaling network in CD4(+) T-lymphocytes. Tohoku J Exp Med 236:139–154

    Article  CAS  PubMed  Google Scholar 

  • Soloviova K, Puliaiev M, Haas M et al (2013) In vivo maturation of Allo-specific CD8 CTL and prevention of lupus-like graft-versus-host disease is critically dependent on T cell signaling through the TNF p75 receptor but not the TNF p55 receptor. J Immunol 190:4562–4572

    Article  CAS  PubMed  Google Scholar 

  • Song DG, Ye Q, Poussin M et al (2012) CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood 119:696–706

    Article  CAS  PubMed  Google Scholar 

  • Soroosh P, Doherty TA, So T et al (2011) Herpesvirus entry mediator (TNFRSF14) regulates the persistence of T helper memory cell populations. J Exp Med 208:797–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinberg MW, Turovskaya O, Shaikh RB et al (2008) A crucial role for HVEM and BTLA in preventing intestinal inflammation. J Exp Med 205:1463–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinberg MW, Huang YJ, Wang-Zhu Y et al (2013) BTLA interaction with HVEM expressed on CD8(+) T cells promotes survival and memory generation in response to a bacterial infection. PLoS One 8:e77992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strober W, Fuss IJ (2011) Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140:1756–1767

    Article  CAS  PubMed  Google Scholar 

  • Sugamura K, Ishii N, Weinberg AD (2004) Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. Nat Rev Immunol 4:420–431

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Fink PJ (2007) A new class of reverse signaling costimulators belongs to the TNF family. J Immunol 179:4307–4312

    Article  CAS  PubMed  Google Scholar 

  • Tahiliani V, Hutchinson TE, Abboud G et al (2017) OX40 cooperates with ICOS to amplify follicular Th cell development and germinal center reactions during infection. J Immunol 198:218–228

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Yamada H, Shibata K et al (2008) A novel role of CD30L/CD30 signaling by T-T cell interaction in Th1 response against mycobacterial infection. J Immunol 181:6316–6327

    Article  CAS  PubMed  Google Scholar 

  • Twohig JP, Marsden M, Cuff SM et al (2012) The death receptor 3/TL1A pathway is essential for efficient development of antiviral CD4(+) and CD8(+) T-cell immunity. FASEB J 26:3575–3586

    Article  CAS  PubMed  Google Scholar 

  • Ungewickell A, Bhaduri A, Rios E et al (2015) Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2. Nat Genet 47:1056–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villarreal DO, Chin D, Smith MA et al (2017) Combination GITR targeting/PD-1 blockade with vaccination drives robust antigen-specific antitumor immunity. Oncotarget 8:39117–39130

    PubMed  PubMed Central  Google Scholar 

  • Vinay DS, Kwon BS (2014) 4-1BB (CD137), an inducible costimulatory receptor, as a specific target for cancer therapy. BMB Rep 47:122–129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ward-Kavanagh LK, Lin WW, Sedy JR et al (2016) The TNF receptor superfamily in co-stimulating and co-inhibitory responses. Immunity 44:1005–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23:23–68

    Article  CAS  PubMed  Google Scholar 

  • Wensveen FM, Unger PP, Kragten NA et al (2012) CD70-driven costimulation induces survival or Fas-mediated apoptosis of T cells depending on antigenic load. J Immunol 188:4256–4267

    Article  CAS  PubMed  Google Scholar 

  • Wortzman ME, Clouthier DL, McPherson AJ et al (2013a) The contextual role of TNFR family members in CD8(+) T-cell control of viral infections. Immunol Rev 255:125–148

    Article  PubMed  CAS  Google Scholar 

  • Wortzman ME, Lin GH, Watts TH (2013b) Intrinsic TNF/TNFR2 interactions fine-tune the CD8 T cell response to respiratory influenza virus infection in mice. PLoS One 8:e68911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Flies AS, Flies DB et al (2007) Selective targeting of the LIGHT-HVEM costimulatory system for the treatment of graft-versus-host disease. Blood 109:4097–4104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada A, Salama AD, Sho M et al (2005) CD70 signaling is critical for CD28-independent CD8+ T cell-mediated alloimmune responses in vivo. J Immunol 174:1357–1364

    Article  CAS  PubMed  Google Scholar 

  • You S, Poulton L, Cobbold S et al (2009) Key role of the GITR/GITRLigand pathway in the development of murine autoimmune diabetes: a potential therapeutic target. PLoS One 4:e7848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu P, Fu YX (2008) Targeting tumors with LIGHT to generate metastasis-clearing immunity. Cytokine Growth Factor Rev 19:285–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zander RA, Obeng-Adjei N, Guthmiller JJ et al (2015) PD-1 co-inhibitory and OX40 co-stimulatory crosstalk regulates helper T cell differentiation and anti-plasmodium humoral immunity. Cell Host Microbe 17:628–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers 24590571 (to T.S.), 15H04640 (to T.S.), 18H02572 (to T.S.), 24390118 (to N.I.), 15H04742 (to N.I.), and 16K15508 (to N.I.), as well as by grants from the Takeda Science Foundation (to T.S.), the Suzuken Memorial Foundation (to T.S.), the SENSHIN Medical Research Foundation (to T.S.), the Astellas Foundation for Research on Metabolic Disorders (to T.S.), the Yamaguchi Educational and Scholarship Foundation (to T.S.), and the Daiichi-Sankyo Foundation of Life Science (to N.I. and T.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori So .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

So, T., Ishii, N. (2019). The TNF–TNFR Family of Co-signal Molecules. In: Azuma, M., Yagita, H. (eds) Co-signal Molecules in T Cell Activation. Advances in Experimental Medicine and Biology, vol 1189. Springer, Singapore. https://doi.org/10.1007/978-981-32-9717-3_3

Download citation

Publish with us

Policies and ethics