Skip to main content
Log in

The effect of pressure on open-framework silicates: elastic behaviour and crystal–fluid interaction

  • Review Article
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The elastic behaviour and the structural evolution of microporous materials compressed hydrostatically in a pressure-transmitting fluid are drastically affected by the potential crystal–fluid interaction, with a penetration of new molecules through the zeolitic cavities in response to applied pressure. In this manuscript, the principal mechanisms that govern the P-behaviour of zeolites with and without crystal–fluid interaction are described, on the basis of previous experimental findings and computational modelling studies. When no crystal–fluid interaction occurs, the effects of pressure are mainly accommodated by tilting of (quasi-rigid) tetrahedra around O atoms that behave as hinges. Tilting of tetrahedra is the dominant mechanism at low-mid P-regime, whereas distortion and compression of tetrahedra represent the mechanisms which usually dominate the mid-high P regime. One of the most common deformation mechanisms in zeolitic framework is the increase of channels ellipticity. The deformation mechanisms are dictated by the topological configuration of the tetrahedral framework; however, the compressibility of the cavities is controlled by the nature and bonding configuration of the ionic and molecular content, resulting in different unit-cell volume compressibility in isotypic structures. The experimental results pertaining to compression in “penetrating” fluids, and thus with crystal–fluid interaction, showed that not all the zeolites experience a P-induced intrusion of new monoatomic species or molecules from the P-transmitting fluids. For example, zeolites with well-stuffed channels at room conditions (e.g. natural zeolites) tend to hinder the penetration of new species through the zeolitic cavities. Several variables govern the sorption phenomena at high pressure, among those: the “free diameters” of the framework cavities, the chemical nature and the configuration of the extra-framework population, the partial pressure of the penetrating molecule in the fluid (if mixed with other non-penetrating molecules), the rate of P-increase, the surface/volume ratio of the crystallites under investigations and the temperature at which the experiment is conducted. An overview of the intrusion phenomena of monoatomic species (e.g. He, Ar, Kr), small (e.g. H2O, CO2) and complex molecules, along with the P-induced polymerization phenomena (e.g. C2H2, C2H4, C2H6O, C2H6O2, BNH6, electrolytic MgCl2·21H2O solution) is provided, with a discussion of potential technological and geological implications of these experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackley MW, Rege SU, Saxena H (2003) Application of natural zeolites in the purification and separation of gases. Micropor Mesopor Mater 61:25–42

    Article  Google Scholar 

  • Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  Google Scholar 

  • Allen M, Tildesley D (1987) Computer simulation of liquids. Clarendon Press, Oxford

    Google Scholar 

  • Alt JC, Honnorez J, Laverne C, Emmermann R (1986) Hydrothermal alteration of a 1 km section through the upper oceanic crust, deep sea drilling project hole 504B: mineralogy, chemistry and evolution of seawater–basalt interactions. J Geophys Res 91:10309–10335

    Article  Google Scholar 

  • Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393

    Article  Google Scholar 

  • Angel RJ, Allan DR, Miletich R, Finger LW (1997) The use of quartz as an internal pressure standard in high-pressure crystallography. J Appl Crystallogr 30:461–466

    Article  Google Scholar 

  • Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SJ (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Crystallogr 40:26–32

    Article  Google Scholar 

  • Arletti R, Ferro O, Quartieri S, Sani A, Tabacchi G, Vezzalini G (2003) Structural deformation mechanisms of zeolites under pressure. Am Mineral 88:1416–1422

    Article  Google Scholar 

  • Arletti R, Fois E, Gigli L, Vezzalini G, Quartieri S, Tabacchi G (2017) Irreversible conversion of a water–ethanol solution into an organized two-dimensional network of alternating supramolecular units in a hydrophobic zeolite under pressure. Angew Chem Int Ed 56:2105–2109

    Article  Google Scholar 

  • Arletti R, Leardini L, Vezzalini G, Quartieri S, Gigli L, Santoro M, Haines J, Rouquette J, Konczewicz L (2015) Pressure-induced penetration of guest molecules in high-silica zeolites, the case of mordenite. Phys Chem Chem Phys 17:24262–24274

    Article  Google Scholar 

  • Arletti R, Quartieri S, Vezzalini G (2010) Elastic behaviour of zeolite boggsite in silicone oil and aqueous medium: a case of high-pressure-induced over-hydration. Am Mineral 95:1247–1256

    Article  Google Scholar 

  • Arletti R, Ronchi L, Quartieri S, Vezzalini G, Ryzhikov A, Nouali H, Daou TJ, Patarin J (2016) Intrusion–extrusion experiments of MgCl2 aqueous solution in pure silica ferrierite: Evidence of the nature of intruded liquid by in situ high pressure synchrotron X-ray powder diffraction. Micropor Mesopor Mater 235:253–260

    Article  Google Scholar 

  • Arletti R, Vezzalini G, Morsli A, Di Renzo F, Dmitriev V, Quartieri S (2011) Elastic behaviour of MFI-type zeolites: 1- compressibility of Na-ZSM-5 in penetrating and non-penetrating media. Micropor Mesopor Mater 142:696–707

    Article  Google Scholar 

  • Arletti R, Vezzalini G, Quartieri S, Di Renzo F, Dmitriev V (2014) Pressure-induced water intrusion in FER-type zeolites and the influence of extraframework species on structural deformations. Microp Mesop Mater 191:27–37

    Article  Google Scholar 

  • Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  • Bai P, Jeon MY, Ren L, Knight C, Deem MW, Tsapatsis M, Siepmann JI (2015) Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modelling. Nat Commun 6:5912

    Article  Google Scholar 

  • Balestra SRG, Hamad S, Ruiz-Salvador AR, Domínguez-García V, Merkling PJ, Dubbeldam D, Calero S (2015) Understanding nanopore window distortions in the reversible molecular valve zeolite RHO. Chem Mater 27:5657–5667

    Article  Google Scholar 

  • Ballone P, Quartieri S, Sani A, Vezzalini G (2002) High-pressure deformation mechanism in scolecite: a combined computational-experimental study. Am Mineral 87:1194–1206

    Article  Google Scholar 

  • Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. WIREs Comput Mol Sci 1:826–843

    Article  Google Scholar 

  • Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A 38:3098–3100

    Article  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  Google Scholar 

  • Bellussi G, Carati A, Clerici MG, Maddinelli G, Millini R (1992) Reactions of titanium silicalite with protic molecules and hydrogen peroxide. J Catal 133:220–230

    Article  Google Scholar 

  • Besson JM, Nelmes RJ, Hamel G, Loveday JS, Weill G, Hull S (1992) Neutron powder diffraction above 10 GPa. Phys B 180:907–910

    Article  Google Scholar 

  • Betti C, Fois E, Mazzucato E, Medici C, Quartieri S, Tabacchi G, Vezzalini G, Dmitriev V (2007) Gismondine under HP: deformation mechanism and re-organization of the extra-framework species. Microporous Mesoporous Mater 103:190–209

    Article  Google Scholar 

  • Bish DL, Carey JW (2001) Thermal behaviour of natural zeolites. Rev Mineral Geochem 45:403–452

    Article  Google Scholar 

  • Bish DL, Vaniman DT, Chipera SJ, Carey JW (2003) The distribution of zeolites and their effects on the performance of a nuclear waste repository at Yucca Mountain, Nevada, U.S.A. Am Mineral 88:1889–1902

    Google Scholar 

  • Bludský O, Silhan M, Nachtigall P, Bucko T, Benco L, Hafner J (2005) Theoretical investigation of CO interaction with copper sites in zeolites: periodic DFT and hybrid quantum mechanical/interatomic potential function study. J Phys Chem B 109:9631–9638

    Article  Google Scholar 

  • Bryukhanov IA, Rybakov AA, Larin AV, Trubnikov DN, Vercauteren DP (2017) The role of water in the elastic properties of aluminosilicate zeolites: DFT investigation. J Mol Model 23:68

    Article  Google Scholar 

  • Cailliez F, Trzpit M, Soulard M, Demachy I, Boutin A, Patarin J, Fuchs AH (2008) Thermodynamics of water intrusion in nanoporous hydrophobic solids. Phys Chem Chem Phys 10:4817–4826

    Article  Google Scholar 

  • Calzaferri G (2012) Nanochannels: hosts for the supramolecular organization of molecules and complexes. Langmuir 28:6216–6231

    Article  Google Scholar 

  • Calzaferri G (2017) Entropy in multiple equilibria, theory and applications. Phys Chem Chem Phys 19:10611–10621

    Article  Google Scholar 

  • Calzaferri G, Huber S, Maas H, Minkowski C (2003) Host–guest antenna materials. Angew Chem Int Ed 42:3732–3758

    Article  Google Scholar 

  • Cao P, Khorev O, Devaux A, Sägesser L, Kunzmann A, Ecker A, Häner R, Brühwiler D, Calzaferri G, Belser P (2016) Supramolecular organization of dye molecules in zeolite L channels: synthesis, properties, and composite materials. Chem Eur J 22:4046–4060

    Article  Google Scholar 

  • Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    Article  Google Scholar 

  • Carter EA, Ciccotti G, Hynes JT, Kapral R (1989) Constrained reaction coordinate dynamics for the simulation of rare events. Chem Phys Lett 156:472–477

    Article  Google Scholar 

  • Ceriani C, Fois E, Gamba A, Tabacchi G, Ferro O, Quartieri S, Vezzalini G (2004a) Dehydration dynamics of bikitaite: Part II. Ab initio molecular dynamics study. Am Mineral 89:102–109

    Article  Google Scholar 

  • Ceriani C, Laio A, Fois E, Gamba A, Martoňák R, Parrinello M (2004b) Molecular dynamics simulation of reconstructive phase transitions on an anhydrous zeolite. Phys Rev B 70:113403

    Article  Google Scholar 

  • Colella C (2011) A critical reconsideration of biomedical and veterinary applications of natural zeolites. Clay Miner 46:295–309

    Article  Google Scholar 

  • Colligan M, Forster PM, Cheetham AK, Lee Y, Vogt T, Hriljac JA (2004) Synchrotron X-ray powder diffraction and computational investigation of purely siliceous zeolite Y under pressure. J Am Chem Soc 126:12015–12022

    Article  Google Scholar 

  • Colligan M, Lee Y, Vogt T, Celestian AJ, Parise JB, Marshall WG, Hriljac JA (2005) High pressure neutron powder diffraction study of superhydrated natrolite. J Phys Chem B 109:18223–18225

    Article  Google Scholar 

  • Combariza AF, Gomez DA, Sastre G (2013) Simulating the properties of small pore silica zeolites using interatomic potentials. Chem Soc Rev 42:114–127

    Article  Google Scholar 

  • Comboni D, Gatta GD, Lotti P, Merlini M, Liermann H-P (2017) On the P-induced behaviour of the zeolite phillipsite: an in situ single-crystal synchrotron X-ray diffraction study. Phys Chem Miner 44:1–20

    Article  Google Scholar 

  • Comodi P, Gatta GD, Zanazzi PF (2001) High-pressure structural behaviour of heulandite. Eur J Miner 13:497–505

    Article  Google Scholar 

  • Coombs DS, Alberti A, Armbruster T, Artioli G, Colella C, Galli E, Grice JD, Liebau F, Mandarino JA, Minato H, Nickel EH, Passaglia E, Peacor DR, Quartieri S, Rinaldi R, Ross M, Sheppard RA, Tillmanns E, Vezzalini G (1997) Recommended nomenclature for zeolite minerals: report of the Subcommittee on Zeolites of International Mineralogical Association, Commission on new minerals and minerals names. Can Miner 35:1571–1606

    Google Scholar 

  • Coudert FX (2013) Systematic investigation of the mechanical properties of pure silica zeolites: stiffness, anisotropy, and negative linear compressibility. Phys Chem Chem Phys 15:16012–16018

    Article  Google Scholar 

  • Coudert FX, Cailliez F, Vuilleumier R, Fuchs AH, Boutin A (2009) Water nanodroplets confined in zeolite pores. Faraday Discuss 141:377–398

    Article  Google Scholar 

  • Cruciani G (2006) Zeolites upon heating: Factors governing their thermal stability and structural changes. J Phys Chem Solids 67:1973–1994

    Article  Google Scholar 

  • Cucinotta F, Guenet A, Bizzarri C, Mróz W, Botta C, Milián-Medina B, Gierschner J, De Cola L (2014) Energy transfer at the zeolite L boundaries: towards photo- and electroresponsive materials. ChemPlusChem 79:45–57

    Article  Google Scholar 

  • De Boer K, Jansen APJ, Van Santen RA (1995) Structure–stability relationships for all-silica structures. Phys Rev B 52:12579–12590

    Article  Google Scholar 

  • De Wispelaere K, Ensing B, Ghysels A, Meijer EJ, Van Speybroeck V (2015) Complex reaction environments and competing reaction mechanisms in zeolite catalysis: insights from advanced molecular dynamics. Chem Eur J 21:9385–9396

    Article  Google Scholar 

  • Decker DL, Petersen S, Debray D, Lambert M (1979) Pressure-induced ferroelastic phase transition in Pb3(PO4)2: a neutron-diffraction study. Phys Rev B 19:3552–3555

    Article  Google Scholar 

  • Dellago C, Bolhuis PG, Chandler D (1998) Efficient transition path sampling: Application to Lennard-Jones cluster rearrangements. J Chem Phys 108:9236–9245

    Article  Google Scholar 

  • Delle Piane M, Corno M, Pedone A, Dovesi R, Ugliengo P (2014) Large-scale B3LYP simulations of ibuprofen adsorbed in MCM-41 mesoporous silica as drug delivery system. J Phys Chem C 119:26737–26749

    Article  Google Scholar 

  • Demichelis R, Civalleri B, Ferrabone M, Dovesi R (2010) On the performance of eleven DFT functionals in the description of the vibrational properties of aluminosilicates. Int J Quant Chem 110:406–415

    Article  Google Scholar 

  • Demontis P, Suffritti GB, Quartieri S, Fois ES, Gamba A (1987) Molecular dynamics studies on zeolites. II: a simple model for silicates applied to anhydrous natrolite. Zeolites 7:122–127

    Article  Google Scholar 

  • Demontis P, Suffritti GB, Quartieri S, Fois ES, Gamba A (1988) Molecular dynamics studies on zeolites. 3. Dehydrated zeolite A. J Phys Chem 92(4):867–871

    Article  Google Scholar 

  • Demontis P, Suffritti GB, Quartieri S, Fois ES, Gamba A (1990) Molecular dynamics studies on zeolites. 4. Diffusion of methane in silicalite. J Phys Chem 94(10):4329–4334

    Article  Google Scholar 

  • Desbiens N, Demachy I, Fuchs AH, Kirsch-Rodeschini H, Soulard M, Patarin J (2005) Water condensation in hydrophobic nanopores. Angew Chem Int Ed 44:5310–5313

    Article  Google Scholar 

  • Dove MT, Trachenko KO, Tucker MG, Keen DA (2000) Rigid Unit Modes in framework structures: theory, experiment and applications. Rev Mineral Geochem 39:1–33

    Article  Google Scholar 

  • Dovesi R, Orlando R, Civalleri B, Roetti C, Saunders VR, Zicovich-Wilson CM (2005) CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals. Z Kristallogr 220:571–573

    Google Scholar 

  • Erba A, Caglioti D, Zicovich-Wilson CM, Dovesi R (2017) Nuclear-relaxed elastic and piezoelectric constants of materials: Computational aspects of two quantum-mechanical approaches. J Comput Chem 38:257–264

    Article  Google Scholar 

  • Erba A, Mahmoud A, Orlando R, Dovesi R (2014a) Elastic properties of six silicate garnet end members from accurate ab initio simulations. Phys Chem Minerals 41:151–160

    Article  Google Scholar 

  • Erba A, Mahmoud A, Orlando R, Dovesi R (2014b) Erratum to: elastic properties of six silicate garnet end-members from accurate ab initio simulations. Phys Chem Miner 41:161–162

    Article  Google Scholar 

  • Ferro O, Quartieri S, Vezzalini G, Fois E, Gamba A, Tabacchi G (2002) High-pressure behaviour of bikitaite: an integrated theoretical and experimental approach. Am Mineral 87:1415–1425

    Article  Google Scholar 

  • Fischer M (2015) Structure and bonding of water molecules in zeolite hosts: benchmarking plane-wave DFT against crystal structure data. Z Kristallogr 230:325–336

    Google Scholar 

  • Fischer M, Angel R (2017) Accurate structures and energetics of neutral-framework zeotypes from dispersion-corrected DFT calculations. J Chem Phys 146:174111

    Article  Google Scholar 

  • Fischer M, Delgado MR, Areán CO, Duran CO (2015) CO adsorption complexes in zeolites: how does the inclusion of dispersion interactions affect predictions made from DFT calculations? The case of Na-CHA. Theor Chem Acc 134:91

    Article  Google Scholar 

  • Fischer M, Evers FO, Formalik F, Olejniczak A (2016) Benchmarking DFT-GGA calculations for the structure optimisation of neutral-framework zeotypes. Theor Chem Acc 135:257

    Article  Google Scholar 

  • Fois E, Gamba A, Medici C, Tabacchi G (2005c) Intermolecular electronic excitation transfer in a confined space: a first-principles study. ChemPhysChem 6:1917–1922

    Article  Google Scholar 

  • Fois E, Gamba A, Medici C, Tabacchi G, Quartieri S, Mazzucato E, Arletti R, Vezzalini G, Dmitriev V (2008a) High pressure deformation mechanism of Li-ABW: Synchrotron XRPD study and ab initio molecular dynamics simulations. Microporous Mesopor Mater 115:267–280

    Article  Google Scholar 

  • Fois E, Gamba A, Tabacchi G (2000) First-principles simulation of the intracage oxidation of nitrite to nitrate sodalite. Chem Phys Lett 329:1–6

    Article  Google Scholar 

  • Fois E, Gamba A, Tabacchi G, Arletti R, Quartieri S, Vezzalini G (2005a) The “template” effect of the extra-framework content on zeolite compression: The case of yugawaralite. Am Mineral 90:28–35

    Article  Google Scholar 

  • Fois E, Gamba A, Tabacchi G, Ferro O, Quartieri S, Vezzalini G (2002a) A theoretical investigation on pressure-induced changes in the vibrational spectrum of zeolite bikitaite. Stud Surf Sci Catal 142:1877–1884

    Article  Google Scholar 

  • Fois E, Gamba A, Tabacchi G, Quartieri S, Arletti R, Vezzalini G (2005b) High-pressure behaviour of yugawaralite at different water content: an ab initio study. Stud Surf Sci Catal 155:271–280

    Article  Google Scholar 

  • Fois E, Gamba A, Tabacchi G, Quartieri S, Vezzalini G (2001a) Water molecules in single file: first-principles studies of one-dimensional water chains in zeolites. J Phys Chem B 105:3012–3016

    Article  Google Scholar 

  • Fois E, Gamba A, Tabacchi G, Quartieri S, Vezzalini G (2001b) On the collective properties of water molecules in one-dimensional zeolitic channels. Phys Chem Chem Phys 3:4158–4163

    Article  Google Scholar 

  • Fois E, Gamba A, Tabacchi G, Trudu F (2008b) First principles studies on boron sites. Stud Surf Sci Catal 174:751–754

    Article  Google Scholar 

  • Fois E, Gamba A, Tilocca A (2002b) Structure and dynamics of the flexible triple helix of water inside VPI-5 molecular sieves. J Phys Chem B 106:4806–4812

    Article  Google Scholar 

  • Fois E, Tabacchi G, Barreca D, Gasparotto A, Tondello E (2010b) “Hot” surface activation of molecular complexes: insight from modelling studies. Angew Chem Int Ed 49:1944–1948

    Article  Google Scholar 

  • Fois E, Tabacchi G, Calzaferri G (2010a) Interactions, behaviour and stability of fluorenone inside zeolite nanochannels. J Phys Chem C 114:10572–10579

    Article  Google Scholar 

  • Fois E, Tabacchi G, Calzaferri G (2012) Orientation and order of xanthene dyes in the one-dimensional channels of zeolite L: bridging the gap between experimental data and molecular behaviour. J Phys Chem C 116:16784–16799

    Article  Google Scholar 

  • Fois E, Tabacchi G, Quartieri S, Vezzalini G (1999) Dipolar host/guest interactions and geometrical confinement at the basis of the stability of one-dimensional ice in zeolite bikitaite. J Chem Phys 111:355–359

    Article  Google Scholar 

  • Frenkel D, Smit B (2001) Understanding molecular simulation. Academic Press, San Diego

    Google Scholar 

  • Gabrieli A, Sant M, Demontis P, Suffritti GB (2014) Fast and efficient optimization of molecular dynamics force fields for microporous materials: bonded interactions via force matching. Microporous Mesoporous Mater 197:339–347

    Article  Google Scholar 

  • Gabrieli A, Sant M, Demontis P, Suffritti GB (2016) A combined energy-force fitting procedure to develop DFT-based force fields. J Phys Chem C 120:26309–26319

    Article  Google Scholar 

  • Gale JD (1997) GULP: a computer program for the symmetry-adapted simulation of solids. J Chem Soc Faraday Trans 93:629–637

    Article  Google Scholar 

  • Gartzia-Rivero L, Bañuelos J, López-Arbeloa I (2017) Photoactive nanomaterials inspired by nature: LTL zeolite doped with laser dyes as artificial light harvesting systems. Materials 10:495

    Article  Google Scholar 

  • Gatta GD (2005) A comparative study of fibrous zeolites under pressure. Eur J Miner 17:411–422

    Article  Google Scholar 

  • Gatta GD (2008) Does porous mean soft? On the elastic behaviour and structural evolution of zeolites under pressure. Z Kristallogr 223:160–170

    Google Scholar 

  • Gatta GD (2010a) Extreme deformation mechanisms in open-framework silicates at high-pressure: evidence of anomalous inter-tetrahedral angles. Micropor Mesopor Mater 128:78–84

    Article  Google Scholar 

  • Gatta GD, Angel RJ (2007) Elastic behaviour and pressure-induced structural evolution of nepheline: implications for the nature of the modulated superstructure. Am Mineral 92:1446–1455

    Article  Google Scholar 

  • Gatta GD, Bersani D, Lottici PP, Tribaudino M (2014) High-pressure Raman study of CH4 in melanophlogite (type I clathrate). Miner Mag 78:1661–1669

    Article  Google Scholar 

  • Gatta GD, Birch DW, Rotiroti N (2010) Reivestigation of the crystal structure of the zeolite gobbinsite: a single-crystal X-ray diffraction study. Am Miner 95:481–486

    Article  Google Scholar 

  • Gatta GD, Boffa Ballaran T, Comodi P, Zanazzi PF (2004a) Isothermal equation of state and compressional behaviour of tetragonal edingtonite. Am Miner 89:633–639

    Article  Google Scholar 

  • Gatta GD, Boffa Ballaran T, Comodi P, Zanazzi PF (2004b) Comparative compressibility and equation of state of orthorhombic and tetragonal edingtonite. Phys Chem Miner 31:288–298

    Article  Google Scholar 

  • Gatta GD, Brundu A, Cappelletti P, Cerri G, de’Gennaro B, Farina M, Fumagalli P, Guaschino L, Lotti P, Mercurio M (2016a) New insights on pressure, temperature, and chemical stability of CsAlSi5O12, a potential host for nuclear waste. Phys Chem Minerals 43:639–647

    Article  Google Scholar 

  • Gatta GD, Comodi P, Zanazzi PF (2003) New insights on high-pressure behaviour of microporous materials from X-ray single-crystal data. Micropor Mesopor Mater 61:105–115

    Article  Google Scholar 

  • Gatta GD, Comodi P, Zanazzi PF, Boffa Ballaran T (2005) Anomalous elastic behaviour and high-pressure structural evolution of zeolite levyne. Am Miner 90:645–652

    Article  Google Scholar 

  • Gatta GD, Lee Y (2006) On the elastic behaviour of zeolite mordenite: a synchrotron powder diffraction study. Phys Chem Miner 32:726–732

    Article  Google Scholar 

  • Gatta GD, Lee Y (2014) Zeolites at high pressure: A review. Miner Mag 78:267–291

    Article  Google Scholar 

  • Gatta GD, Lotti P (2011) On the low-temperature behaviour of the zeolite gobbinsite: a single-crystal X-ray diffraction study. Micropor Mesopor Mater 143:467–476

    Article  Google Scholar 

  • Gatta GD, Lotti P, Nestola F, Pasqual D (2012) On the high-pressure behaviour of gobbinsite, the natural counterpart of the synthetic zeolite Na–P2. Micropor Mesopor Mater 163:259–269

    Article  Google Scholar 

  • Gatta GD, Nestola F, Boffa Ballaran T (2006) Elastic behaviour, phase transition and pressure-induced structural evolution of analcime. Am Miner 91:568–578

    Article  Google Scholar 

  • Gatta GD, Rotiroti N, Boffa Ballaran T, Pavese A (2008) Leucite at high pressure: elastic behaviour, phase stability and petrological implications. Am Miner 93:1588–1596

    Article  Google Scholar 

  • Gatta GD, Rotiroti N, Boffa Ballaran T, Sanchez-Valle C, Pavese A (2009a) Elastic behaviour and phase-stability of pollucite, a potential host for nuclear waste. Am Miner 94:1137–1143

    Article  Google Scholar 

  • Gatta GD, Sartbaeva A, Wells AS (2009b) Compression behaviour and flexibility window of the analcime-like feldspathoids: experimental and theoretical findings. Eur J Miner 21:571–580

    Article  Google Scholar 

  • Gatta GD, Scheidl KS, Pippinger T, Skála R, Lee Y, Miletich R (2015) High-pressure behaviour and crystal–fluid interaction under extreme conditions in paulingite [PAU-topology]. Micropor Mesopor Mater 206:34–41

    Article  Google Scholar 

  • Gatta GD, Tabacchi G, Fois E, Lee Y (2016b) Behaviour at high pressure of Rb7NaGa8Si12O40·3H2O (a zeolite with EDI topology): a combined experimental–computational study. Phys Chem Miner 43:209–216

    Article  Google Scholar 

  • Gatta GD, Wells SA (2004) Rigid unit modes at high pressure: an explorative study of a fibrous zeolite-like framework with EDI topology. Phys Chem Minerals 31:465–474

    Article  Google Scholar 

  • Gatta GD, Wells SA (2006) Structural evolution of zeolite levyne under hydrostatic and non-hydrostatic pressure: geometric modelling. Phys Chem Miner 33:243–255

    Article  Google Scholar 

  • Gatta GD (2010b) Microporous materials at high pressure: Are they really soft? In: Boldyreva E, Dera P (eds) High-pressure crystallography: from fundamental phenomena to technological applications. NATO science for peace and security—series b (physics and biophysics). Springer Science, Berlin, pp 481–491

  • Giddy AP, Dove MT, Pawley GS, Heine V (1993) The determination of rigid unit modes as potential soft modes for displacive phase transitions in framework crystal structures. Acta Crystallogr A 4:697–703

    Article  Google Scholar 

  • Gigli L, Arletti R, Tabacchi G, Fois E, Vitillo JG, Martra G, Agostini G, Quartieri S, Vezzalini G (2014) Close-packed dye molecules in zeolite channels self-assemble into supramolecular nanoladders. J Phys Chem C 118:15732–15743

    Article  Google Scholar 

  • Gillet P, Malézieux JM, Itié JP (1996) Phase changes and amorphization of zeolites at high pressure: the case of scolecite and mesolite. Am Miner 81:651–657

    Article  Google Scholar 

  • Goryainov SV (2005) Pressure-induced amorphization of Na2Al2Si3O10·2H2O and KAlSi2O6 zeolites. Phys Status Solidi 202:R25–R27

    Article  Google Scholar 

  • Grau-Crespo R, Acuay E, Ruiz-Salvador, AR (2002) A free energy minimisation study of the monoclinic–orthorhombic transition in MFI zeolite. Chem Commun 2544–2545. doi:10.1039/B208064H

  • Greaves GN, Meneau F, Sapelkin A, Colyer LM, Gwynn IA, Wade S, Sankar G (2003) The rheology of collapsing zeolites amorphized by temperature and pressure. Nature Mat 2:622–629

    Article  Google Scholar 

  • Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  Google Scholar 

  • Grimme S (2011) Density functional theory with London dispersion corrections. Wiley Interdiscip Rev Comput Mol Sci 1:211–228

    Article  Google Scholar 

  • Gulín-González J, Pupo CT, Conyedo EN, Ruiz-Puentes A, Demontis P, Suffritti GB (2016) A lattice dynamics study of ZK-4 microporous material under different temperature and pressure conditions. Micropor Mesopor Mater 226:191–200

    Article  Google Scholar 

  • Gulín-González J, Suffritti GB (2004) Amorphization of calcined LTA zeolites at high pressure: a computational study. Microporous Mesoporous Mater 69:127–134

    Article  Google Scholar 

  • Gutiérrez-Sevillano JJ, Calero S, Hamad S, Grau-Crespo R, Rey F, Valencia S, Palomino M, Balestra SRG, Ruiz-Salvador AR (2016) Critical role of dynamic flexibility in Ge-containing zeolites: impact on diffusion. Chem Eur J 22:10036–10043

    Article  Google Scholar 

  • Göltl F, Grüneis A, Bučko T, Hafner J (2012) Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller–Plesset perturbation theory. J Chem Phys 137:114111

    Article  Google Scholar 

  • Göltl F, Hafner J (2012) Structure and properties of metal-exchanged zeolites studied using gradient-corrected and hybrid functionals. I. Structure and energetics. J Chem Phys 136:064501

    Article  Google Scholar 

  • Haines J, Cambon O, Levelut C, Santoro M, Gorelli F, Garbarino G (2010) Deactivation of Pressure-induced amorphization in silicalite SiO2 by insertion of guest species. J Am Chem Soc 132:8860–8861

    Article  Google Scholar 

  • Haines J, Léger JM, Gorelli F, Hanfland M (2001) Crystalline post-quartz phase in silica at high pressure. Phys Rev Lett 87:15503

    Article  Google Scholar 

  • Hammonds KD, Dove MT, Giddy AP, Heine V (1994) Crush: a Fortran program for the analysis of the rigid-unit mode spectrum of a framework structure. Am Miner 79:1207–1209

    Google Scholar 

  • Hazen RM (1983) Zeolite molecular sieve 4A: anomalous compressibility and volume discontinuities at high pressure. Science 219:1065–1067

    Article  Google Scholar 

  • Hazen RM, Finger LW (1984) Compressibility of zeolite 4A is dependent on the molecular size of the hydrostatic pressure medium. J Appl Phys 56:1838–1840

    Article  Google Scholar 

  • Hendriks FC, Schmidt JE, Rombouts JA, Lammertsma K, Bruijnincx PC, Weckhuysen BM (2017) Probing zeolite crystal architecture and structural imperfections using differently sized fluorescent organic probe molecules. Chem Eur J 23:6305–6314

    Article  Google Scholar 

  • Huang Y, Havenga EA (2001) Why do zeolites with LTA structure undergo reversible amorphization under pressure? Chem Phys Lett 345:65–71

    Article  Google Scholar 

  • Iannuzzi M, Laio A, Parrinello M (2003) Efficient exploration of reactive potential energy surfaces using Car–Parrinello molecular dynamics. Phys Rev Lett 90:238302

    Article  Google Scholar 

  • Insuwan W, Rangsriwatananon K, Meeprasert J, Namuangruk S, Surakhot Y, Kungwan N, Jungsuttiwong S (2016) Combined experimental and theoretical investigation on fluorescence resonance energy transfer of dye loaded on LTL zeolite. Microp Mesop Mater 241:372–382

    Article  Google Scholar 

  • Jordá JL, Rey F, Sastre G, Valencia S, Palomino M, Corma A, Segura A, Errandonea D, Lacomba R, Manjón FJ, Gomis Ó, Kleppe AK, Jephcoat AP, Amboage M, Rodríguez-Velamazán JA (2013) Synthesis of a novel zeolite through a pressure-induced reconstructive phase transition process. Angew Chem Int Ed 52:10458–10462

    Article  Google Scholar 

  • Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Ciccotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore, pp 51–66

    Google Scholar 

  • Kalló D (2001) Applications of natural zeolites in water and wastewater treatment. Rev Miner Geochem 45:519–550

    Article  Google Scholar 

  • Kenichi T (1999) Absence of the c/a anomaly in Zn under high pressure with a helium-pressure medium. Phys Rev B 60:6171–6174

    Article  Google Scholar 

  • Klotz S, Chervin J-C, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:075413

    Article  Google Scholar 

  • Komarneni S (1985) Phillipsite in Cs decontamination and immobilization. Clays Clay Min 33:145–151

    Article  Google Scholar 

  • Kremleva A, Vogt T, Rösch N (2013) Monovalent cation-exchanged natrolites and their behaviour under pressure. A computational study. J Phys Chem C 117:19020–19030

    Article  Google Scholar 

  • Kremleva A, Vogt T, Rösch N (2014) Potassium-exchanged natrolite under pressure. Computational study vs experiment. J Phys Chem C 118:22030–22039

    Article  Google Scholar 

  • Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99:12562–12566

    Article  Google Scholar 

  • Larin AV, Trubnikov DN, Vercauteren DP (2005) Improvement of X-ray diffraction geometries of water physisorbed in zeolites on the basis of periodic Hartree-Fock calculations. Int J Quantum Chem 102:971–979

    Article  Google Scholar 

  • Lee Y, Hriljac JA, Parise JB, Vogt T (2005) Pressure-induced stabilization of ordered paranatrolite: a solution to the paranatrolite controversy. Am Mineral 90:252–257

    Article  Google Scholar 

  • Lee Y, Hriljac JA, Vogt T (2004) Pressure-induced migration of zeolitic water in laumontite. Phys Chem Minerals 31:421–428

    Google Scholar 

  • Lee Y, Hriljac JA, Vogt T (2010) Pressure-induced argon insertion into an auxetic small pore zeolite. J Phys Chem C 114:6922–6927

    Article  Google Scholar 

  • Lee Y, Hriljac JA, Vogt T, Parise JB, Edmondson M, Anderson P, Corbin D, Nagai T (2001) Phase transition of zeolite RHO at high-pressure. J Am Chem Soc 123:8418–8419

    Article  Google Scholar 

  • Lee Y, Kao CC, Kim SJ, Lee HH, Lee DR, Shin TJ, Choi JY (2007) Water nanostructures confined inside the quasi-one-dimensional channels of LTL zeolite. Chem Mater 19:6252–6257

    Article  Google Scholar 

  • Lee Y, Kim SJ, Kao CC, Vogt T (2008) Pressure-induced hydration and order-disorder transition in a synthetic potassium gallosilicate zeolite with gismondine topology. J Am Chem Soc 130:2842–2850

    Article  Google Scholar 

  • Lee Y, Liu D, Seoung D, Liu Z, Kao CC, Vogt T (2011) Pressure- and heat-induced insertion of CO2 into an auxetic small-pore zeolite. J Am Chem Soc 133:1674–1677

    Article  Google Scholar 

  • Lee Y, Vogt T, Hriljac JA, Parise JB, Artioli G (2002a) Pressure-induced volume expansion of zeolites in the natrolite family. J Am Chem Soc 124:5466–5475

    Article  Google Scholar 

  • Lee Y, Vogt T, Hriljac JA, Parise JB, Hanson JC, Kim SJ (2002b) Non-framework cation migration and irreversible pressure-induced hydration in a zeolite. Nature 420:485–489

    Article  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  Google Scholar 

  • Likhacheva AY, Malyshev ME, Manakov AY, Goryainov SV, Ancharov AI (2009) Non-hydrostatic compression of zeolite NaA in water medium: connection to anomalous conductivity. Z Kristallogr 224:137–143

    Article  Google Scholar 

  • Likhacheva AY, Seryotkin YV, Manakov AY, Goryainov SV, Ancharov AI, Sheromov MA (2006) Anomalous compression of scolecite and thomsonite in aqueous medium to 2 GPa. High Pres Res 26:449–453

    Article  Google Scholar 

  • Likhacheva AY, Seryotkin YV, Manakov AY, Goryainov SV, Ancharov AI, Sheromov MA (2007) Pressure-induced over-hydration of thomsonite: a synchrotron powder diffraction study. Am Mineral 92:1610–1615

    Article  Google Scholar 

  • Lippert G, Hutter J, Parrinello M (1997) A hybrid Gaussian and plane wave density functional scheme. Mol Phys 92:477–488

    Article  Google Scholar 

  • Lotti P, Arletti R, Gatta GD, Quartieri S, Vezzalini G, Merlini M, Dmitriev V, Hanfland M (2015a) Compressibility and crystal–fluid interactions in all-silica ferrierite at high pressure. Micropor Mesopor Mater 218:42–54

    Article  Google Scholar 

  • Lotti P, Gatta GD, Comboni D, Merlini M, Pastero L, Hanfland M (2016) AlPO4-5 zeolite at high pressure: crystal-fluid interaction and elastic behaviour. Micropor Mesopor Mat 228:158–167

    Article  Google Scholar 

  • Lotti P, Gatta GD, Merlini M, Liermann H-P (2015b) High-pressure behaviour of synthetic mordenite–Na: an in situ single-crystal synchrotron X-ray diffraction study. Z Kristallogr 230:201–211

    Google Scholar 

  • Lotti P, Gatta GD, Rotiroti N, Cámara F (2012) High-pressure study of a natural cancrinite. Am Mineral 97:872–882

    Article  Google Scholar 

  • Maas H, Calzaferri G (2002) Trapping energy from and injecting energy into dye-zeolite nanoantennae. Angew Chem Int Ed 41:2284–2288

    Article  Google Scholar 

  • Machon D, Dmitriev VP, Bouvier P, Timonin PN, Shirokov VB, Weber H-P (2003) Pseudoamorphization of Cs2HgBr4. Phys Rev B 68:144104

    Article  Google Scholar 

  • Maerzke KA, McGrath MJ, Kuo IFW, Tabacchi G, Siepmann JI, Mundy CJ (2009) Vapor–liquid phase equilibria of water modelled by a Kim-Gordon potential. Chem Phys Lett 479:60–64

    Article  Google Scholar 

  • Manzano H, Gartzia-Rivero L, Bañuelos J, López-Arbeloa I (2013) Ultraviolet–visible dual absorption by single BODIPY dye confined in LTL zeolite nanochannels. J Phys Chem C 117:13331–13336

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Martoňák R, Laio A, Parrinello M (2003) Predicting crystal structures: the Parrinello–Rahman method revisited. Phys Rev Lett 90:75503

    Article  Google Scholar 

  • Martínez C, Corma A (2011) Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coord Chem Rev 255:1558–1580

    Article  Google Scholar 

  • Martínez-Martínez V, García R, Gómez-Hortigüela L, Sola Llano R, Pérez-Pariente J, López-Arbeloa I (2014) Highly luminescent and optically switchable hybrid material by one-pot encapsulation of dyes into MgAPO-11 unidirectional nanopores. ACS Photonics 1:205–211

    Article  Google Scholar 

  • Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Maxwell IE, Stork WHJ (2001) Hydrocarbon processing with zeolites. Stud Surf Sc Catal 137:747–819

    Article  Google Scholar 

  • Merrill L, Bassett WA (1974) Miniature diamond anvil pressure cell for single-crystal X-ray diffraction studies. Rev Sci Instr 45:290–294

    Article  Google Scholar 

  • Miletich R, Allan DR, Kuhs WF (2000) High-pressure single-crystal techniques. Rev Miner Geochem 41:445–519

    Article  Google Scholar 

  • Miletich R, Hejny C, Krauss G, Ullrich A (2005) Diffraction techniques: Shedding light on structural changes at extreme conditions. In: Miletich R (ed) Mineral behaviour at extreme conditions. European Mineralogical Union Notes in Mineralogy, vol 7, pp 281–338

  • Ming DW, Allen ER (2001) Use of natural zeolites in agronomy, horticulture, and environmental soil remediation. Rev Miner Geochem 45:619–654

    Article  Google Scholar 

  • Morpurgo S (2015) A DFT study on Cu(I) coordination in Cu-ZSM-5: effects of the functional choice and tuning of the ONIOM approach. J Comput Chem 36:660–669

    Article  Google Scholar 

  • Mumpton FA (1999) La roca magica: Uses of natural zeolites in agriculture and industry. Proc Natl Acad Sci USA 96:3463–3470

    Article  Google Scholar 

  • Narayanan B, Reimanis IE, Ciobanu CV (2013) Atomic-scale mechanism for pressure-induced amorphization of β-eucryptite. J Appl Phys 114:083520

    Article  Google Scholar 

  • Niwa K, Tanaka T, Hasegawa M, Okada T, Yagi T, Kikegawa T (2013) Pressure-induced noble gas insertion into Linde-type A zeolite and its incompressible behaviours at high pressure. Micropor Mesopor Mater 182:191–197

    Article  Google Scholar 

  • Ori S, Quartieri S, Vezzalini G, Dmitriev V (2008a) Pressure-induced structural deformation and elastic behaviour of wairakite. Am Miner 93:53–62

    Article  Google Scholar 

  • Ori S, Quartieri S, Vezzalini G, Dmitriev V (2008b) Pressure-induced over-hydration and water ordering in gismondine: a synchrotron powder diffraction study. Am Miner 93:1393–1403

    Article  Google Scholar 

  • Otero Areán C, Nachtigallova D, Nachtigall P, Garrone E, Delgado MR (2007) Thermodynamics of reversible gas adsorption on alkali-metal exchanged zeolites—the interplay of infrared spectroscopy and theoretical calculations. Phys Chem Chem Phys 9:1421–1437

    Article  Google Scholar 

  • Pabalan RT, Bertetti FP (2001) Cation-exchange properties of natural zeolites. Rev Miner Geochem 45:453–518

    Article  Google Scholar 

  • Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York, Oxford

  • Parrinello M, Rahman A (1980) Crystal structure and pair potentials: a molecular-dynamics study. Phys Rev Lett 45:1196–1199

    Article  Google Scholar 

  • Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7185

    Article  Google Scholar 

  • Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  • Perdew J, Ruzsinszky A, Csonka G, Vydrov O, Scuseria G, Constantin L, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406

    Article  Google Scholar 

  • Piccini GM, Alessio M, Sauer J (2016) Ab initio calculation of rate constants for molecule–surface reactions with chemical accuracy. Angew Chem Int Ed 55:5235–5237

    Article  Google Scholar 

  • Pisani C (1999) Software for the quantum-mechanical simulation of the properties of crystalline materials: state of the art and prospects. J Mol Struct (Theochem) 463:125–137

    Article  Google Scholar 

  • Pisani C (1996) Quantum mechanical ab initio calculation of the properties of crystalline materials. Lect Notes Chem 67:47–75

  • Popovic Z, Otter M, Calzaferri G, De Cola L (2007) Self-assembling living systems with functional nanomaterials. Angew Chem Int Ed 46:6188–6191

    Article  Google Scholar 

  • Quartieri S, Montagna G, Arletti R, Vezzalini G (2011) Elastic behaviour of MFI-type zeolites: compressibility of H-ZSM-5 in pentrating and non-penetrating media. J Solid State Chem 184:1505–1516

    Article  Google Scholar 

  • Remler D, Madden P (1990) Molecular dynamics without effective potentials via the Car–Parrinello approach. Mol Phys 70:921–966

    Article  Google Scholar 

  • Resel R, Oehzelt M, Shimizu K, Nakayama A, Takemura K (2004) On the phase-transition in anthracene induced by high pressure. Solid State Commun 129:103–106

    Article  Google Scholar 

  • Richard J, León Cid S, Rouquette J, van der Lee A, Bernard S, Haines J (2016) Pressure-induced insertion of ammonia borane in the siliceous zeolite, silicalite-1F. J Phys Chem C 120:9334–9340

    Article  Google Scholar 

  • Román-Román EI, Zicovich-Wilson CM (2015) The role of long-range van der Waals forces in the relative stability of SiO2–zeolites. Chem Phys Lett 619:109–114

    Article  Google Scholar 

  • Rutter MD, Secco RA, Huang Y (2000) Ionic conduction in hydrated zeolite Li-, Na- and K-A at high pressures. Chem Phys Lett 331:189–195

    Article  Google Scholar 

  • Rutter MD, Uchida T, Secco RA, Huang Y, Wang Y (2001) Investigation of pressure-induced amorphization in hydrated zeolite Li-A and Na-A using synchrotron X-ray diffraction. J Phys Chem Solids 62:599–606

    Article  Google Scholar 

  • Sanders MJ, Leslie M, Catlow CRA (1984) Interatomic potentials for SiO2. J Chem Soc Chem Commun 19:1271–1273

    Article  Google Scholar 

  • Santoro M, Dziubek K, Scelta D, Ceppatelli M, Gorelli FA, Bini R, Thibaud J-M, Di Renzo F, Cambon O, Rouquette J, Hermet P, van der Lee A, Haines J (2015) High pressure synthesis of all-transoid polycarbonyl [–(C=O)–] n in a zeolite. Chem Mater 27:6486–6489

    Article  Google Scholar 

  • Santoro M, Gorelli FA, Bini R, Haines J, van der Lee A (2013) High-pressure synthesis of a polyethylene/zeolite nano-composite material. Nat Commun 4:1557

    Article  Google Scholar 

  • Santoro M, Scelta D, Dziubek K, Ceppatelli M, Gorelli FA, Bini R, Garbarino G, Thibaud J-M, Di Renzo F, Cambon O, Hermet P, Rouquette J, van der Lee A, Haines J (2016) Synthesis of 1D polymer/zeolite nanocomposites under high pressure. Chem Mater 28:4065–4071

    Article  Google Scholar 

  • Sartbaeva A, Gatta GD, Wells SA (2008) Flexibility window controls pressure-induced phase transition in analcime. Europhys Lett 83:26002

    Article  Google Scholar 

  • Sartbaeva A, Wells SA (2012) Framework flexibility and rational design of new zeolites for catalysis. Appl Petrochem Res 2:69–72

    Article  Google Scholar 

  • Sartbaeva A, Wells SA, Treacy MMJ, Thorpe MF (2006) The flexibility window in zeolites. Nature Mat 5:962–965

    Article  Google Scholar 

  • Scelta D, Ceppatelli M, Santoro M, Bini R, Gorelli FA, Perucchi A, Mezouar M, van der Lee A, Haines J (2014) High pressure polymerization in a confined space: conjugated chain/zeolite nanocomposites. Chem Mater 26:2249–2255

    Article  Google Scholar 

  • Secco RA, Huang Y (1999) Pressure-induced disorder in hydrated Na-A zeolite. J Phys Chem Solids 60:999–1002

    Article  Google Scholar 

  • Seoung D, Lee Y, Cynn H, Park C, Choi KY, Blom DA, Evans WJ, Kao CC, Vogt T, Lee Y (2014) Irreversible xenon insertion into a small pore zeolite at moderate pressures and temperatures. Nature Chem 6:835–839

    Article  Google Scholar 

  • Seoung D, Lee Y, Kao CC, Vogt T, Lee Y (2013) Super-hydrated zeolites: pressure-induced hydration in natrolites. Chem Eur J 33:11100

    Article  Google Scholar 

  • Seoung D, Lee Y, Kao CC, Vogt T, Lee Y (2015) Two-step pressure-induced superhydration in small pore natrolite with divalent extra-framework cations. Chem Mat 27:3874–3880

    Article  Google Scholar 

  • Seryotkin YV (2016) Evolution of the bikitaite structure at high pressure: a single-crystal X-ray diffraction study. Micropor Mesopor Mater 226:415–423

    Article  Google Scholar 

  • Seryotkin YV, Bakakin VV, Fursenko BA, Belitsky IA, Joswig W, Radaelli PG (2005) Structural evolution of natrolite during over-hydration: a high-pressure neutron diffraction study. Eur J Miner 17:305–313

    Article  Google Scholar 

  • Seryotkin YV, Bakakin VV, Likhacheva AY, Dementiev SN, Rashchenko SV (2017) Structural behaviour of Tl-exchanged natrolite at high pressure depending on the composition of pressure-transmitting medium. Phys Chem Miner. doi:10.1007/s00269-017-0887-0) (in press)

  • Sevigny JH, Whitechurch H, Storey M, Salters VJM (1992) Zeolite-facies metamorphism of central Kerguelen Plateau basalts. Proc Ocean Drilling Program, Scientific Results 120:63–69

  • Sheppard D, Xiao P, Chemelewski W, Johnson DD, Henkelman G (2012) A generalized solid-state nudged elastic band method. J Chem Phys 136:074103

    Article  Google Scholar 

  • De Silva P, Wesolowski TA (2012) Exact non-additive kinetic potentials in realistic chemical systems. J Chem Phys 137:094110

    Article  Google Scholar 

  • Smit B, Maesen TL (2008) Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. Chem Rev 108:4125–4184

    Article  Google Scholar 

  • Spano E, Tabacchi G, Gamba A, Fois E (2006) On the role of Ti(IV) as a Lewis acid in the chemistry of titanium zeolites: formation, structure, reactivity, and aging of Ti—peroxo oxidizing intermediates. A first principles study. J Phys Chem B 110:21651–21661

    Article  Google Scholar 

  • Tabacchi G, Calzaferri G, Fois E (2016) One-dimensional self-assembly of perylene-diimide dyes by unidirectional transit of zeolite channel openings. Chem Commun 52:11195–11198

    Article  Google Scholar 

  • Tabacchi G, Fois E, Calzaferri G (2015a) Structure of nanochannel entrances in stopcock-functionalized zeolite L composites. Angew Chem Int Ed 54:11112–11116

    Article  Google Scholar 

  • Tabacchi G, Hutter J, Mundy CJ (2005) A density-functional approach to polarizable models: a Kim–Gordon response density interaction potential for molecular simulations. J Chem Phys 123:074108

    Article  Google Scholar 

  • Tabacchi G, Fois E, Barreca D, Carraro G, Gasparotto A, Maccato C (2015b) Modelling the first activation stages of the Fe(hfa)2TMEDA CVD precursor on a heated growth surface. In: Advanced processing and manufacturing technologies for nanostructured and multifunctional materials ii: a collection of papers presented at the 39th international conference on advanced ceramics and composites. Wiley, Hoboken, pp 83–90

  • Taramasso M, Perego G, Notari B (1983) U.S. Patent 441051

  • Tkatchenko A, Scheffler M (2009) Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102:073005

    Article  Google Scholar 

  • Tribaudino M, Artoni A, Mavris C, Bersani D, Lottici PP, Belletti D (2008) Single-crystal X-ray and Raman investigation on melanophlogite from Varano Marchesi (Parma, Italy). Am Mineral 93:88–94

    Article  Google Scholar 

  • Tribaudino M, Gatta GD, Lee Y (2010) A high-pressure cubic-to-tetragonal phase-transition in melanophlogite, a SiO2 clathrate phase. Micropor Mesopor Mater 129:267–273

    Article  Google Scholar 

  • Tuma C, Sauer J (2004) A hybrid MP2/planewave-DFT scheme for large chemical systems: proton jumps in zeolites. Chem Phys Lett 387:388–394

    Article  Google Scholar 

  • Tuma C, Sauer J (2006) Treating dispersion effects in extended systems by hybrid MP2:DFT calculations—protonation of isobutene in zeolite ferrierite. Phys Chem Chem Phys 8:3955–3965

    Article  Google Scholar 

  • U.S. Geological Survey (2017) Mineral commodity summaries 2016. U.S. Geological Survey, Reston, Virginia

  • Van Speybroeck V, Hemelsoet K, Joos L, Waroquier M, Bell RG, Catlow CRA (2015) Advances in theory and their application within the field of zeolite chemistry. Chem Soc Rev 44:7044–7111

    Article  Google Scholar 

  • VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun 167:103–112

    Article  Google Scholar 

  • Vermeiren W, Gilson JP (2009) Impact of zeolites on the petroleum and petrochemical industry. Top Catal 52:1131–1161

    Article  Google Scholar 

  • Viani L, Minoia A, Cornil J, Beljonne D, Egelhaaf HJ, Gierschner J (2016) Resonant energy transport in dye-filled monolithic crystals of zeolite L: modelling of inhomogeneity. J Phys Chem C 120:27192–27199

    Article  Google Scholar 

  • Wells SA, Dove MT, Tucker MG (2002) Real-space rigid-unit-mode analysis of dynamic disorder in quartz, cristobalite and amorphous silica. J Phys Condens Matter 14:4567–4584

    Article  Google Scholar 

  • Wells SA, Leung KM, Edwards PP, Sartbaeva A (2015) A flexibility windows in faujasite with explicit water and methanol extra-framework content. Dalton Trans 44:5978–5984

    Article  Google Scholar 

  • Wells SA, Sartbaeva A (2012) Template-based geometric simulation of flexible frameworks. Materials 5:415–431

    Article  Google Scholar 

  • Wells SA, Sartbaeva A (2015) GASP: software for geometric simulations of flexibility in polyhedral and molecular framework structures. Mol Simul 41:1409–1421

    Article  Google Scholar 

  • Wells SA, Sartbaeva A, Gatta GD (2011) Flexibility windows and phase transitions of ordered and disordered ANA framework zeolites. Europhys Lett 94:56001

    Article  Google Scholar 

  • Wesolowski TA, Warshel A (1993) Frozen density functional approach for ab initio calculations of solvated molecules. J Phys Chem 97:8050–8053

    Article  Google Scholar 

  • White CLIM, Ruiz-Salvador AR, Lewis DW (2004) Pressure-induced hydration effects in the zeolite laumontite. Angew Chem Int Ed 54:469–472

    Article  Google Scholar 

  • Wiedemann SCC, Ristanović Z, Whiting GT, Reddy Marthala VR, Kärger J, Weitkamp J, Wels B, Bruijnincx PCA, Weckhuysen BM (2016) Large ferrierite crystals as models for catalyst deactivation during skeletal isomerisation of oleic acid: evidence for pore mouth catalysis. Chem Eur J 22:199–210

    Article  Google Scholar 

  • Woodley SM, Catlow R (2008) Crystal structure prediction from first principles. Nat Mat 7:937–946

    Article  Google Scholar 

  • Wu Z, Cohen R (2006) More accurate generalized gradient approximation for solids. Phys Rev B 73:235116

    Article  Google Scholar 

  • Yasukawa K, Liu H, Fujinaga K, Machida S, Haraguchi S, Ishii T, Nakamura K, Kato Y (2014) Geochemistry and mineralogy of REY-rich mud in the eastern Indian Ocean. J Asian Earth Sci 93:25–36

    Article  Google Scholar 

  • Zhang L, Ahsbahs H, Kutoglu A (1998) Hydrostatic compression and crystal structure of pyrope to 33 GPa. Phys Chem Miner 25:301–307

    Article  Google Scholar 

  • Zhou X, Wesolowski TA, Tabacchi G, Fois E, Calzaferri G, Devaux A (2013) First-principles simulation of the absorption bands of fluorenone in zeolite L. Phys Chem Chem Phys 15:159–167

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Italian Ministry of Education, MIUR-Project: “Futuro in Ricerca 2012-ImPACT- RBFR12CLQD”. G. Tabacchi thanks Prof. E. Fois for useful discussions on the role of computational modelling in the investigation of high-pressure phenomena in open frameworks. Two anonymous reviewers are thanked for the revision of the manuscript. The Editor, M. Rieder, is warmly thanked for this invited paper to celebrate the 40th of Physics and Chemistry of Minerals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Gatta.

Additional information

Invited review article to commemorate the 40th anniversary of the journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatta, G.D., Lotti, P. & Tabacchi, G. The effect of pressure on open-framework silicates: elastic behaviour and crystal–fluid interaction. Phys Chem Minerals 45, 115–138 (2018). https://doi.org/10.1007/s00269-017-0916-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-017-0916-z

Keywords

Navigation