Skip to main content

Advertisement

Log in

Behaviour at high pressure of Rb7NaGa8Si12O40·3H2O (a zeolite with EDI topology): a combined experimental–computational study

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The high-pressure behaviour and the P-induced structural evolution of a synthetic zeolite Rb7NaGa8Si12O40·3H2O (with edingtonite-type structure) were investigated both by in situ synchrotron powder diffraction (with a diamond anvil cell and the methanol:ethanol:water = 16:3:1 mixture as pressure-transmitting fluid) up to 3.27 GPa and by ab initio first-principles computational modelling. No evidence of phase transition or penetration of P-fluid molecules was observed within the P-range investigated. The isothermal equation of state was determined; V 0 and K T0 refined with a second-order Birch–Murnaghan equation of state are V 0 = 1311.3(2) Å3 and K T0 = 29.8(7) GPa. The main deformation mechanism (at the atomic scale) in response to the applied pressure is represented by the cooperative rotation of the secondary building units (SBU) about their chain axis (i.e. [001]). The direct consequence of SBU anti-rotation on the zeolitic channels parallel to [001] is the increase in pore ellipticity with pressure, in response to the extension of the major axis and to the contraction of the minor axis of the elliptical channel parallel to [001]. The effect of the applied pressure on the bonding configuration of the extra-framework content is only secondary. A comparison between the P-induced main deformation mechanisms observed in Rb7NaGa8Si12O40·3H2O and those previously found in natural fibrous zeolites is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angel RJ (2000) Equation of state. In: Hazen RM, Downs RT (ed), High-temperature and high-pressure crystal chemistry, reviews in mineralogy and geochemistry. Mineralogical Society of America and Geochemical Society, Washington 41:35–59

  • Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SJ (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Crystallogr 40:26–32

    Article  Google Scholar 

  • Arletti R, Ferro O, Quartieri S, Sani A, Tabacchi G, Vezzalini G (2003) Structural deformation mechanisms of zeolites under pressure. Am Mineral 88:1416–1422

    Article  Google Scholar 

  • Armbruster T, Gunter ME (2001) Crystal structures of natural zeolites. In Bish DL, Ming DW (ed) Natural zeolites: occurrence, properties, application, reviews in mineralogy and geochemistry. Mineralogical Society of America and Geochemical Society, Washington 45:1–57

  • Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  • Ballone P, Quartieri S, Sani A, Vezzalini G (2002) High-pressure deformation mechanism in scolecite: a combined computational-experimental study. Am Mineral 87:1194–1206

    Article  Google Scholar 

  • Betti C, Fois E, Mazzucato E, Medici C, Quartieri S, Tabacchi G, Vezzalini G, Dmitriev V (2007) Gismondine under HP: deformation mechanism and reorganization of the extra-framework species. Microporous Mesoporous Mater 103:190–209

    Article  Google Scholar 

  • Birch F (1947) Finite elastic strain of cubic crystal. Phys Rev 71:809–824

    Article  Google Scholar 

  • Car R, Parrinello M (1985) Unified approach to molecular dynamics and density functional theory. Phys Rev Lett 55:2471–2474

    Article  Google Scholar 

  • Ceriani C, Fois E, Gamba A, Tabacchi G, Ferro O, Quartieri S, Vezzalini G (2004) Dehydration dynamics of bikitaite: Part II. Ab initio molecular dynamics study. Am Mineral 89:102–109

    Article  Google Scholar 

  • Colligan M, Lee Y, Vogt T, Celestian AJ, Parise JB, Marshall WG, Hriljac JA (2005) High pressure neutron powder diffraction study of superhydrated natrolite. J Phys Chem B 109:18223–18225

    Article  Google Scholar 

  • CPMD (2015) http://www.cpmd.org/, Copyright IBM Corp. 1990–2015, Copyright MPI für Festkörperforschung Stuttgart 1997–2001

  • Ferro O, Quartieri S, Vezzalini G, Fois E, Gamba A, Tabacchi G (2002) High-pressure behavior of bikitaite: an integrated theoretical and experimental approach. Am Mineral 87:1415–1425

    Article  Google Scholar 

  • Fois E, Gamba A, Tabacchi G, Arletti R, Quartieri S, Vezzalini G (2005) The “template” effect of the extra-framework content on zeolite compression: the case of yugawaralite. Am Mineral 90:28–35

    Article  Google Scholar 

  • Fois E, Gamba A, Tabacchi G (2008a) Bathochromic effects in electronic excitation spectra of hydrated Ti zeolites: a theoretical characterization. Chem Phys Chem 9:538–543

    Google Scholar 

  • Fois E, Gamba A, Medici C, Tabacchi G, Quartieri S, Mazzucato E, Arletti R, Vezzalini G, Dmitriev V (2008b) High pressure deformation mechanism of Li-ABW: synchrotron XRPD and ab initio molecular dynamics simulations. Microporous Mesoporous Mater 115:267–280

    Article  Google Scholar 

  • Fois E, Tabacchi G, Calzaferri G (2010a) Interactions, behavior and stability of fluorenone inside zeolite nanochannels. J Phys Chem C 114:10572–10579

    Article  Google Scholar 

  • Fois E, Tabacchi G, Barreca D, Gasparotto A, Tondello G (2010b) “Hot” surface activation of molecular complexes: insight from modeling studies. Angew Chem Int Ed 49:1944–1948

    Article  Google Scholar 

  • Fois E, Tabacchi G, Calzaferri G (2012) Orientation and order of xanthene dyes in the one-dimensional channels of zeolite L: bridging the gap between experimental data and molecular behavior. J Phys Chem C 116:16784–16799

    Article  Google Scholar 

  • Fois E, Tabacchi G, Devaux A, Belser P, Brühwiler D, Calzaferri G (2013) Host–guest interactions and orientation of dyes in the one-dimensional channels of zeolite L. Langmuir 29:9188–9198

    Article  Google Scholar 

  • Gamba A, Tabacchi G, Fois E (2009) TS-1 from first principles. J Phys Chem A 113:15006–15015

    Article  Google Scholar 

  • Gatta GD (2005) A comparative study of fibrous zeolites under pressure. Eur J Mineral 17:411–422

    Article  Google Scholar 

  • Gatta GD (2008) Does porous mean soft? On the elastic behaviour and structural evolution of zeolites under pressure. Z Kristallogr 223:160–170

    Google Scholar 

  • Gatta GD (2010) Extreme deformation mechanisms in open-framework silicates at high-pressure: evidence of anomalous inter-tetrahedral angles. Microporous Mesoporous Mater 128:78–84

    Article  Google Scholar 

  • Gatta GD, Lee Y (2014) Zeolites at high pressure: a review. Min Mag 78:267–291

    Article  Google Scholar 

  • Gatta GD, Wells SA (2004) Rigid unit modes at high pressure: an explorative study of a fibrous zeolite-like framework with EDI topology. Phys Chem Minerals 31:465–474

    Article  Google Scholar 

  • Gatta GD, Comodi P, Zanazzi PF (2003) New insights on high-pressure behaviour of microporous materials from X-ray single-crystal data. Microporous Mesoporous Mater 61:105–115

    Article  Google Scholar 

  • Gatta GD, Boffa Ballaran T, Comodi P, Zanazzi PF (2004a) Isothermal equation of state and compressional behaviour of tetragonal edingtonite. Am Mineral 89:633–639

    Article  Google Scholar 

  • Gatta GD, Boffa Ballaran T, Comodi P, Zanazzi PF (2004b) Comparative compressibility and equation of state of orthorhombic and tetragonal edingtonite. Phys Chem Minerals 31:288–298

    Article  Google Scholar 

  • Gigli L, Arletti R, Tabacchi G, Fois E, Vitillo JG, Martra G, Agostini G, Quartieri S, Vezzalini G (2014) Close-packed dye molecules in zeolite channels self-assemble into supramolecular nanoladders. J Phys Chem C 118:15372–15743

    Article  Google Scholar 

  • Gottardi G, Galli E (1985) Natural zeolites. Springer, Berlin

    Book  Google Scholar 

  • Hoover WG (1985) Canonical dynamics: equilibrium phase space distributions. Phys Rev A 31:1695–1697

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86–748

  • Le Bail A, Duroy H, Fourquet JL (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452

    Article  Google Scholar 

  • Lee Y, Kim SJ, Parise JB (2000) Synthesis and crystal structures of gallium- and germanium-variants of the fibrous zeolites with the NAT, EDI and THO structure types. Micropor Mesopor Mat 34:255–271

    Article  Google Scholar 

  • Lee Y, Vogt T, Hriljac JA, Parise JB, Artioli G (2002a) Pressure-induced volume expansion of zeolites in the natrolite family. J Am Chem Soc 124:5466–5475

    Article  Google Scholar 

  • Lee Y, Vogt T, Hriljac JA, Parise JB, Hanson JC, Kimk SJ (2002b) Non-framework cation migration and irreversible pressure-induced hydration in a zeolite. Nature 420:485–489

    Article  Google Scholar 

  • Lee Y, Hriljac JA, Studer A, Vogt T (2004) Anisotropic compression of edingtonite and thomsonite to 6 GPa at room temperature. Phys Chem Minerals 31:22–27

    Article  Google Scholar 

  • Lee Y, Hriljac JA, Vogt T (2010) Pressure-induced argon insertion into an auxetic small pore zeolite. J Phys Chem C 114:6922–6927

    Article  Google Scholar 

  • Lee Y, Liu D, Seoung D, Liu Z, Kao CC, Vogt T (2011) Pressure- and heat-induced insertion of CO2 into an auxetic small-pore zeolite. J Am Chem Soc 133:1674–1677

    Article  Google Scholar 

  • Likhacheva A, Seryotkin Yu, Manakov A, Goryainov S, Ancharov A, Sheromov M (2006) Anomalous compression of scolecite and thomsonite in aqueous medium to 2 GPa. High Pres Res 26:449–453

    Article  Google Scholar 

  • Likhacheva AY, Seryotkin YV, Manakov AY, Goryainov SV, Ancharov AI, Sheromov MA (2007) Pressure-induced over-hydration of thomsonite: a synchrotron powder diffraction study. Am Mineral 92:1610–1615

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2:65–71

    Article  Google Scholar 

  • Seoung D, Lee Y, Kao CC, Vogt T, Lee Y (2013) Super-hydrated zeolites: pressure-induced hydration in natrolites. Chem Eur J 19:10876–10883

    Article  Google Scholar 

  • Seoung D, Lee Y, Cynn H, Park C, Choi KY, Blom DA, Evans WJ, Kao CC, Vogt T, Lee Y (2014) Irreversible xenon insertion into a small pore zeolite at moderate pressures and temperatures. Nat Chem 6:835–839

    Article  Google Scholar 

  • Seoung D, Lee Y, Kao CC, Vogt T, Lee Y (2015) Two-step pressure-induced superhydration in small pore natrolite with divalent extra-framework cations. Chem Mater 27:3874–3880

    Article  Google Scholar 

  • Smith JV (1983) Enumeration of 4-connected 3-dimensional nets and classification of framework silicates: combination of 4-1 chain and 2D nets. Z Kristallogr 165:191–198

    Article  Google Scholar 

  • Tabacchi G, Fois E, Calzaferri G (2015) Structure of nanochannel entrances in stopcock-functionalized zeolite L composites. Angew Chem Int Ed 54:11112–11116

    Article  Google Scholar 

  • Thomson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J Appl Cryst 20:79–83

    Article  Google Scholar 

  • Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006

    Article  Google Scholar 

  • Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Italian Ministry of Education, MIUR-Project: “Futuro in Ricerca 2012-ImPACT- RBFR12CLQD”. Y. Lee thanks the Global Research Laboratory Program of the Korean Ministry of Science, ICT and Planning. Two anonymous reviewers are thanked.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Gatta.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatta, G.D., Tabacchi, G., Fois, E. et al. Behaviour at high pressure of Rb7NaGa8Si12O40·3H2O (a zeolite with EDI topology): a combined experimental–computational study. Phys Chem Minerals 43, 209–216 (2016). https://doi.org/10.1007/s00269-015-0787-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0787-0

Keywords

Navigation