Skip to main content
Log in

CO adsorption complexes in zeolites: How does the inclusion of dispersion interactions affect predictions made from DFT calculations? The case of Na-CHA

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations have played a pivotal role in identifying and understanding different coordination modes of carbon monoxide adsorbed in zeolites: Previous studies combining IR spectroscopic measurements and DFT have firmly established that an adsorbed CO molecule can interact either with a single cation (single-site interaction), or with two or more cations simultaneously (dual-site or multiple-site interaction). However, one aspect that has been scarcely addressed so far is the dependence of the DFT equilibrium structures on the choice of the functional. With the ongoing development of DFT, exemplified by the more widespread use of dispersion-corrected DFT, this question becomes increasingly relevant. The present study investigates whether the inclusion of an empirical dispersion correction leads to qualitatively different predictions in comparison with dispersion-uncorrected DFT, taking CO adsorbed in sodium-exchanged chabazite having two different Si/Al ratios (Si/Al = 11:1 and Si/Al = 2:1) as a model system. Equilibrium structures obtained with the PBE functional and with the dispersion-corrected PBE-D functional are compared, revealing a tendency of dispersion-corrected DFT to favour a stronger interaction of CO with dual sites. This is indicated by a short contact between the oxygen atom of the CO molecule (already coordinated through its carbon atom to a primary Na+ cation) and a secondary Na+ cation. In addition to these qualitative findings, the quantitative agreement of calculated adsorption enthalpies and C–O stretching frequencies with experimental values obtained from variable-temperature IR spectroscopy is evaluated. While neither functional is particularly successful in predicting accurate adsorption enthalpies, the range of C–O stretching frequency values delivered by the PBE-D functional shows a better agreement with the experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Areán CO, Nachtigallová D, Nachtigall P, Garrone E, Delgado MR (2007) Thermodynamics of reversible gas adsorption on alkali-metal exchanged zeolites—the interplay of infrared spectroscopy and theoretical calculations. Phys Chem Chem Phys 9:1421–1437. doi:10.1039/b615535a

    Article  Google Scholar 

  2. Nachtigall P, Delgado MR, Nachtigallova D, Areán CO (2012) The nature of cationic adsorption sites in alkaline zeolites-single, dual and multiple cation sites. Phys Chem Chem Phys 14:1552–1569. doi:10.1039/c2cp23237e

    Article  CAS  Google Scholar 

  3. Van Speybroeck V, Hemelsoet K, Joos L, Waroquier M, Bell RG, Catlow CRA (2015) Advances in theory and their application within the field of zeolite chemistry. Chem Soc Rev. doi:10.1039/C5CS00029G

    Google Scholar 

  4. Ferrari AM, Ugliengo P, Garrone E (1996) Ab initio study of the adducts of carbon monoxide with alkaline cations. J Chem Phys 105:4129–4139. doi:10.1063/1.472283

    Article  CAS  Google Scholar 

  5. Lupinetti AJ, Fau S, Frenking G, Strauss SH (1997) Theoretical analysis of the bonding between CO and positively charged atoms. J Phys Chem A 101:9551–9559. doi:10.1021/jp972657l

    Article  CAS  Google Scholar 

  6. Broclawik E, Datka J, Gil B, Piskorz W, Kozyra P (2000) The interaction of CO, N2 and NO with Cu cations in ZSM-5: quantum chemical description and IR study. Top Catal 11(12):335–341. doi:10.1023/A:1027235511555

    Article  Google Scholar 

  7. Jardillier N, Villagomez EA, Delahay G, Coq B, Berthomieu D (2006) Probing Cu(I)-exchanged zeolite with CO: DFT modeling and experiment. J Phys Chem B 110:16413–16421. doi:10.1021/jp063190u

    Article  CAS  Google Scholar 

  8. Cairon O, Guesmi H (2011) How does CO capture process on microporous NaY zeolites? A FTIR and DFT combined study. Phys Chem Chem Phys 13:11430–11437. doi:10.1039/c1cp20086k

    Article  CAS  Google Scholar 

  9. Nour Z, Berthomieu D (2014) Multiple adsorption of CO on Na-exchanged Y faujasite: a DFT investigation. Mol Simul 40:33–44. doi:10.1080/08927022.2013.848281

    Article  CAS  Google Scholar 

  10. Bludský O, Šilhan M, Nachtigallová D, Nachtigall P (2003) Calculations of site-specific CO stretching frequencies for copper carbonyls with the “near spectroscopic accuracy”: CO interaction with Cu+/MFI. J Phys Chem A 107:10381–10388. doi:10.1021/jp036504b

    Article  Google Scholar 

  11. Nachtigallova D, Nachtigall P, Bludsky O (2004) Calculations of the site specific stretching frequencies of CO adsorbed on Li+/ZSM-5. Phys Chem Chem Phys 6:5580–5587. doi:10.1039/b414296a

    Article  CAS  Google Scholar 

  12. Ugliengo P, Busco C, Civalleri B, Zicovich-Wilson CM (2005) Carbon monoxide adsorption on alkali and proton-exchanged chabazite: an ab initio periodic study using the CRYSTAL code. Mol Phys 103:2559–2571. doi:10.1080/00268970500180865

    Article  CAS  Google Scholar 

  13. Garrone E, Bulánek R, Frolich K, Areán CO, Delgado MR, Palomino GT, Nachtigallová D, Nachtigall P (2006) Single and dual cation sites in zeolites: theoretical calculations and FTIR spectroscopic studies on CO adsorption on K-FER. J Phys Chem B 110:22542–22550. doi:10.1021/jp0631331

    Article  CAS  Google Scholar 

  14. Nachtigall P, Delgado MR, Frolich K, Bulánek R, Palomino GT, Bauçà CL, Areán CO (2007) Periodic density functional and FTIR spectroscopic studies on CO adsorption on the zeolite Na-FER. Microporous Mesoporous Mater 106:162–173. doi:10.1016/j.micromeso.2007.02.049

    Article  CAS  Google Scholar 

  15. Areán CO, Delgado MR, Bauçà CL, Vrbka L, Nachtigall P (2007) Carbon monoxide adsorption on low-silica zeolites: from single to dual and to multiple cation sites. Phys Chem Chem Phys 9:4657–4661. doi:10.1039/b709073k

    Article  Google Scholar 

  16. Areán CO, Delgado MR, Frolich K, Bulánek R, Pulido A, Bibiloni GF, Nachtigall P (2008) Computational and fourier transform infrared spectroscopic studies on carbon monoxide adsorption on the zeolites Na-ZSM-5 and K-ZSM-5: evidence of dual-cation sites. J Phys Chem C 112:4658–4666. doi:10.1021/jp7109934

    Article  Google Scholar 

  17. Bulánek R, Voleská I, Ivanova E, Hadjiivanov K, Nachtigall P (2009) Localization and coordination of Mg2+ cations in ferrierite: combined FTIR spectroscopic and computation investigation of CO adsorption complexes. J Phys Chem C 113:11066–11067. doi:10.1021/jp901575p

    Article  Google Scholar 

  18. Pulido A, Nachtigall P, Delgado MR, Areán CO (2009) Computational and variable-temperature infrared spectroscopic studies on carbon monoxide adsorption on zeolite Ca-A. ChemPhysChem 10:1058–1065. doi:10.1002/cphc.200800843

    Article  CAS  Google Scholar 

  19. Bulánek R, Drobná H, Nachtigall P, Rubes M, Bludský O (2006) On the site-specificity of polycarbonyl complexes in Cu/zeolites: combined experimental and DFT study. Phys Chem Chem Phys 8:5535–5542. doi:10.1039/b613805e

    Article  Google Scholar 

  20. Arean CO, Delgado MR, Nachtigall P, Thang HV, Rubeš M, Bulánek R, Chlubná-Eliášová P (2014) Measuring the Brønsted acid strength of zeolites—does it correlate with the O–H frequency shift probed by a weak base? Phys Chem Chem Phys 16:10129–10141. doi:10.1039/c3cp54738h

    Article  CAS  Google Scholar 

  21. Itadani A, Sogawa Y, Oda A, Torigoe H, Ohkubo T, Kuroda Y (2013) Further evidence for the existence of a dual-Cu+ site in MFI working as the efficient site for C2H6 adsorption at room temperature. Langmuir 29:9727–9733. doi:10.1021/la4018568

    Article  CAS  Google Scholar 

  22. Pham TD, Hudson MR, Brown CM, Lobo RF (2014) Molecular basis for the high CO2 adsorption capacity of chabazite zeolites. ChemSusChem 7:3031–3038. doi:10.1002/cssc.201402555

    Article  CAS  Google Scholar 

  23. Valenzano L, Civalleri B, Chavan S, Palomino GT, Otero Areán C, Bordiga S (2010) Computational and experimental studies on the adsorption of CO, N2, and CO2 on Mg-MOF-74. J Phys Chem C 114:11185–11191. doi:10.1021/jp102574f

    Article  CAS  Google Scholar 

  24. Valenzano L, Civalleri B, Sillar K, Sauer J (2011) Heats of adsorption of CO and CO2 in metal–organic frameworks: quantum mechanical study of CPO-27-M (M = Mg, Ni, Zn). J Phys Chem C 115:21777–21784. doi:10.1021/jp205869k

    Article  CAS  Google Scholar 

  25. Rubeš M, Grajciar L, Bludský O, Wiersum AD, Llewellyn PL, Nachtigall P (2012) Combined theoretical and experimental investigation of CO adsorption on coordinatively unsaturated sites in CuBTC MOF. ChemPhysChem 13:488–495. doi:10.1002/cphc.201100602

    Article  Google Scholar 

  26. Wang H, Zhao L, Xu W, Wang S, Ding Q, Lu X, Guo W (2015) The properties of the bonding between CO and ZIF-8 structures: a density functional theory study. Theor Chem Acc 134:31. doi:10.1007/s00214-015-1636-4

    Article  Google Scholar 

  27. Johnson ER, Mackie ID, DiLabio GA (2009) Dispersion interactions in density-functional theory. J Phys Org Chem 22:1127–1135. doi:10.1002/poc.1606

    Article  CAS  Google Scholar 

  28. Göltl F, Hafner J (2011) Alkane adsorption in Na-exchanged chabazite: the influence of dispersion forces. J Chem Phys 134:064102. doi:10.1063/1.3549815

    Article  Google Scholar 

  29. Pulido A, Delgado MR, Bludský O, Rubeš M, Nachtigall P, Areán CO (2009) Combined DFT/CC and IR spectroscopic studies on carbon dioxide adsorption on the zeolite H-FER. Energy Environ Sci 2:1187–1195. doi:10.1039/b911253g

    Article  CAS  Google Scholar 

  30. Zukal A, Pulido A, Gil B, Nachtigall P, Bludský O, Rubes M, Cejka J (2010) Experimental and theoretical determination of adsorption heats of CO2 over alkali metal exchanged ferrierites with different Si/Al ratio. Phys Chem Chem Phys 12:6413–6422. doi:10.1039/c001950j

    Article  CAS  Google Scholar 

  31. Fischer M, Bell RG (2015) A DFT-D study of the interaction of methane, carbon monoxide, and nitrogen with cation-exchanged SAPO-34. Z Kristallogr Cryst Mater 230:311–323. doi:10.1515/zkri-2014-1802

    CAS  Google Scholar 

  32. Zones SI, Van Nordstrand RA (1988) Novel zeolite transformations: the template-mediated conversion of Cubic P zeolite to SSZ-13. Zeolites 8:166–174. doi:10.1016/S0144-2449(88)80302-6

    Article  CAS  Google Scholar 

  33. IZA Synthesis Commission. http://www.iza-online.org/synthesis/default.htm

  34. Treacy MMJ, Higgins FM (2001) Collection of simulated XRD powder patterns for zeolites. Elsevier, Amsterdam

    Google Scholar 

  35. Tsyganenko AA, Storozhev PY, Otero Areán C (2004) IR-spectroscopic study of the binding isomerism of adsorbed molecules. Kinet Catal 45:530–540. doi:10.1023/B:KICA.0000038081.43384.56

    Article  CAS  Google Scholar 

  36. Areán CO, Manoilova OV, Tsyganenko AA, Palomino GT, Mentruit MP, Geobaldo F, Garrone E (2001) Thermodynamics of hydrogen bonding between CO and the supercage Brønsted acid sites of the H-Y zeolite—studies from variable temperature IR spectrometry. Eur J Inorg Chem 7:1739–1743. doi:10.1002/1099-0682(200107)2001:7<110.1002/1099-0682(200107)2001:7<1739:AID-EJIC1739

    Google Scholar 

  37. Díaz-Cabañas M-J, Barrett PA, Camblor MA (1998) Synthesis and structure of pure SiO2 chabazite: the SiO2 polymorph with the lowest framework density. Chem Commun. doi:10.1039/a804800b

    Google Scholar 

  38. Fischer M, Bell RG (2013) A dispersion-corrected density-functional theory study of small molecules adsorbed in alkali-exchanged chabazites. Z Kristallogr 228:124–133. doi:10.1524/zkri.2012.1562

    Article  CAS  Google Scholar 

  39. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276. doi:10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  40. Smith LJ, Eckert H, Cheetham AK (2001) Potassium cation effects on site preferences in the mixed cation zeolite Li, Na-chabazite. Chem Mater 13:385–391. doi:10.1021/cm0006392

    Article  CAS  Google Scholar 

  41. Caṙtlidge S, Meier WM (1984) Solid state transformations of synthetic CHA-and EAB-type zeolites in the sodium form. Zeolites 4:218–225. doi:10.1016/0144-2449(84)90027-7

    Article  Google Scholar 

  42. Smith LJ, Eckert H, Cheetham AK (2000) Site preferences in the mixed cation zeolite, Li, Na-chabazite: a combined solid-state NMR and neutron diffraction study. J Am Chem Soc 122:1700–1708. doi:10.1021/ja992882b

    Article  CAS  Google Scholar 

  43. Shang J, Li G, Singh R, Gu Q, Nairn KM, Bastow TJ, Medhekar N, Doherty CM, Hill AJ, Liu JZ, Webley PA (2012) Discriminative separation of gases by a “molecular trapdoor” mechanism in chabazite zeolites. J Am Chem Soc 134:19246–19253. doi:10.1021/ja309274y

    Article  CAS  Google Scholar 

  44. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570. doi:10.1524/zkri.220.5.567.65075

    Article  CAS  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi:10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  46. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. doi:10.1002/jcc.20495

    Article  CAS  Google Scholar 

  47. Wu Z, Cohen R (2006) More accurate generalized gradient approximation for solids. Phys Rev B 73:235116. doi:10.1103/PhysRevB.73.235116

    Article  Google Scholar 

  48. Tkatchenko A, Scheffler M (2009) Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102:073005. doi:10.1103/PhysRevLett.102.073005

    Article  Google Scholar 

  49. Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A 111:11683–11700. doi:10.1021/jp073974n

    Article  CAS  Google Scholar 

  50. Civalleri B, Ferrari A, Llunell M, Orlando R, Merawa M, Ugliengo P (2003) Cation selectivity in alkali-exchanged chabazite: an ab initio periodic study. Chem Mater 15:3996–4004. doi:10.1021/cm0342804

    Article  CAS  Google Scholar 

  51. Hush NS, Williams ML (1974) Carbon monoxide bond length, force constant and infrared intensity variations in strong electric fields: valence-shell calculations, with applications to properties of adsorbed and complexed CO. J Mol Spectrosc 50:349–368. doi:10.1016/0022-2852(74)90241-0

    Article  CAS  Google Scholar 

  52. Goldman AS, Krogh-Jespersen K (1996) Why do cationic carbon monoxide complexes have high C–O stretching force constants and short C–O bonds ? Electrostatic effects, not σ-bonding. J Am Chem Soc 118:12159–12166. doi:10.1021/ja960876z

    Article  CAS  Google Scholar 

  53. Hadjiivanov KI, Vayssilov GN (2002) Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Adv Catal 47:307–511. doi:10.1016/S0360-0564(02)47008-3

    CAS  Google Scholar 

  54. Otero Areán C, Tsyganenko AA, Escalona Platero E, Garrone E, Zecchina A (1998) Two coordination modes of CO in zeolites: a temperature-dependent equilibrium. Angew Chemie Int Ed 37:3161–3163. doi:10.1002/(SICI)1521-3773(19981204)37:22<3161:AID-ANIE3161>3.0.CO;2-B

    Article  Google Scholar 

  55. Otero Areán C, Manoilova OV, Turnes Palomino G, Rodríguez Delgado M, Tsyganenko AA, Bonelli B, Garrone E (2002) Variable-temperature infrared spectroscopy: an access to adsorption thermodynamics of weakly interacting systems. Phys Chem Chem Phys 4:5713–5715. doi:10.1039/b209299a

    Article  Google Scholar 

  56. Garrone E, Otero Areán C (2005) Variable temperature infrared spectroscopy: a convenient tool for studying the thermodynamics of weak solid-gas interactions. Chem Soc Rev 34:846–857. doi:10.1039/b407049f

    Article  CAS  Google Scholar 

  57. Tsyganenko AA, Escalona Platero E, Otero Areán C, Garrone E, Zecchina A (1999) Variable-temperature IR spectroscopic studies of CO adsorbed on Na-ZSM-5 and Na-Y zeolites. Catal Lett 61:187–192. doi:10.1023/A:1019089309446

    Article  CAS  Google Scholar 

  58. Areán CO, Palomino GT, Tsyganenko AA, Garrone E (2002) Quantum chemical and FTIR spectroscopic studies on the linkage isomerism of carbon monoxide in alkali-metal-exchanged zeolites: a review of current research. Int J Mol Sci 3:764–776. doi:10.3390/i3070764

    Article  Google Scholar 

  59. Thang HV, Rubeš M, Bludský O, Nachtigall P (2014) Computational investigation of the Lewis acidity in three-dimensional and corresponding two-dimensional zeolites: UTL vs IPC-1P. J Phys Chem A 118:7526–7534. doi:10.1021/jp501089n

    Article  CAS  Google Scholar 

  60. Fischer M, Bell RG (2014) Cation-exchanged SAPO-34 for adsorption-based hydrocarbon separations: predictions from dispersion-corrected DFT calculations. Phys Chem Chem Phys 16:21062–21072. doi:10.1039/C4CP01049C

    Article  CAS  Google Scholar 

  61. Piccini G, Alessio M, Sauer J, Zhi Y, Liu Y, Kolvenbach R, Jentys A, Lercher JA (2015) Accurate adsorption thermodynamics of small alkanes in zeolites. Ab initio theory and experiment for H-chabazite. J Phys Chem C 119:6128–6137. doi:10.1021/acs.jpcc.5b01739

    Article  CAS  Google Scholar 

  62. Hermann J, Bludský O (2013) A novel correction scheme for DFT: a combined vdW-DF/CCSD(T) approach. J Chem Phys 139:034115. doi:10.1063/1.4813826

    Article  Google Scholar 

  63. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. doi:10.1063/1.3382344

    Article  Google Scholar 

  64. Göltl F, Sautet P (2014) Modeling the adsorption of short alkanes in the zeolite SSZ-13 using “van der Waals” DFT exchange correlation functionals: understanding the advantages and limitations of such functionals. J Chem Phys 140:154105. doi:10.1063/1.4871085

    Article  Google Scholar 

Download references

Acknowledgments

M. Fischer acknowledges a postdoctoral fellowship by the German Research Foundation (DFG Grant Fi 1800/1-1), as well as funding by the Central Research Development Fund (CRDF) of the University of Bremen (Funding line 04 – Independent Projects for Post-Docs). M. Fischer is indebted to Dr. Rolf Arvidson and Prof. Andreas Lüttge (Marum) for generous access to the Asgard cluster and further technical support, and to Rob Bell for many insightful discussions, particularly during the initial stages of this project. The Programa Pont “La Caixa” (2014) is gratefully acknowledged for financial support to the work done at the UIB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fischer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, M., Delgado, M.R., Areán, C.O. et al. CO adsorption complexes in zeolites: How does the inclusion of dispersion interactions affect predictions made from DFT calculations? The case of Na-CHA. Theor Chem Acc 134, 91 (2015). https://doi.org/10.1007/s00214-015-1692-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1692-9

Keywords

Navigation