Skip to main content

Advertisement

Log in

On the P-induced behavior of the zeolite phillipsite: an in situ single-crystal synchrotron X-ray diffraction study

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The elastic behavior and the structural evolution at high pressure of a natural phillipsite have been investigated by in situ single-crystal X-ray diffraction up to 9.44 GPa, using a diamond anvil cell and the nominally penetrating P-transmitting fluid methanol:ethanol:water (16:3:1) mix. Although no phase transition was observed within the P-range investigated, two different compressional regimes occur. Between 0.0001 and 2.0 GPa, the refined elastic parameters, calculated by a second-order Birch–Murnaghan equation of state (BM-EoS) fit, are V 0 = 1005(1) Å3, K 0 = 89(8) GPa for the unit-cell volume; a 0 = 9.914(7) Å, K a  = 81(12) GPa for the a-axis; b 0 = 14.201(9) Å, K b  = 50(5) GPa for the b-axis; and c 0 = 8.707(2) Å, K c  = 107(8) GPa for the c-axis (K a :K b :K c ~1.62:1:2.14). Between 2.0 and 9.4 GPa, a P-induced change in the configuration of H2O molecules, coupled with a change in the tilting mechanisms of the framework tetrahedra, gives rise to a second compressional regime, in which the phillipsite structure is softer if compared to the first compressional range. In the second compressional regime, the refined elastic parameters, calculated by a second-order BM-EoS fit, are V 0 = 1098 (7) Å3, K 0 = 18.8(7) GPa for the unit-cell volume; a 0 = 10.07(3) Å, K a  = 30(2) GPa for the a-axis; b 0 = 14.8(1) Å, K b  = 11(1) GPa for the b-axis; and c 0 = 8.94(2) Å, K c  = 21(1) GPa for the c-axis (K a :K b :K c ~2.72:1:1.90). The evolution of the monoclinic β angle with pressure shows two distinct trends in the two compressional regimes: with a negative slope between 0.0001 and 2.0 GPa, and a positive slope between 2.0 and 9.4 GPa. The mechanisms, at the atomic scale, that govern the two compressional regimes of the phillipsite structure are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agilent (2012) CrysAlis RED. Agilent Technologies Ltd, Yarnton

    Google Scholar 

  • Angel RJ, Hazen RM, Downs RT (2000) High-temperature and high-pressure crystal chemistry. Rev Mineral Geochem 41:35–60

    Article  Google Scholar 

  • Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SD (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Crystallogr 40:26–32

    Article  Google Scholar 

  • Angel RJ, Alvaro M, Gonzalez-Platas J (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Z Kristallogr 229:405–419

    Google Scholar 

  • Armbruster T, Gunter ME (2001) Crystal structures of natural zeolites. Rev Mineral Geochem 45:1–57

    Article  Google Scholar 

  • Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  • Danisi RM, Armbruster T, Nagashima M (2015) Structural intergrowth of merlinoite/phillipsite and its temperature-dependent dehydration behaviour: a single-crystal X-ray study. Mineral Mag 79:191–203

    Article  Google Scholar 

  • Galli E, Loschi Ghittoni AG (1972) The crystal chemistry of phillipsites. Am Mineral 57:1125–1145

    Google Scholar 

  • Gatta GD, Lee Y (2007) Anisotropic elastic behaviour and structural evolution of zeolite phillipsite at high pressure: a synchrotron powder diffraction study. Microporous Mesoporous Mater 105:239–250

    Article  Google Scholar 

  • Gatta GD, Lee Y (2014) Zeolites at high pressure: a review. Mineral Mag 78:267–291

    Article  Google Scholar 

  • Gatta GD, Comodi P, Zanazzi PF, Boffa Ballaran T (2005) Anomalous elastic behavior and high-pressure structural evolution of zeolite levyne. Am Mineral 90:645–652

    Article  Google Scholar 

  • Gatta GD, Nestola F, Boffa Ballaran T (2006) Elastic behavior, phase transition and pressure-induced structural evolution of analcime. Am Mineral 91:568–578

    Article  Google Scholar 

  • Gatta GD, Rotiroti N, Boffa Ballaran T, Pavese A (2008) Leucite at high-pressure: elastic behaviour, phase stability and petrological implications. Am Mineral 93:1588–1596

    Article  Google Scholar 

  • Gatta GD, Cappelletti P, Rotiroti N, Slebodnick C, Rinaldi R (2009a) New insights into the crystal structure and crystal chemistry of the zeolite phillipsite. Am Mineral 94:190–199

    Article  Google Scholar 

  • Gatta GD, Rotiroti N, Boffa Ballaran T, Sanchez-Valle C, Pavese A (2009b) Elastic behavior and phase stability of pollucite, a potential host for nuclear waste. Am Mineral 94:1137–1143

    Article  Google Scholar 

  • Gatta GD, Cappelletti P, Langella A (2010) Crystal-chemistry of phillipsites from the Neapolitan Yellow Tuff. Eur J Mineral 22:779–786

    Article  Google Scholar 

  • Gatta GD, Lotti P, Nestola F, Pasqual D (2012) On the high-pressure behavior of gobbinsite, the natural counterpart of the synthetic zeolite Na-P2. Microporous Mesoporous Mater 163:259–269

    Article  Google Scholar 

  • Gatta GD, Comboni D, Alvaro M, Lotti P, Càmara F, Domeneghetti MC (2014) Thermoelastic behavior and dehydration process of cancrinite. Phys Chem Miner 41:373–386

    Article  Google Scholar 

  • Gatta GD, Cappelletti P, de’ Gennaro B, Rotiroti N, Langella A (2015) New data on Cu-exchanged phillipsite: a multi-methodological study. Phys Chem Miner 42:723–733

    Article  Google Scholar 

  • Gottardi G, Galli E (1985) Natural zeolites. Minerals and rocks series. Springer, Berlin, p 409

    Book  Google Scholar 

  • Gualtieri AF, Caputo D, Colella C (1999a) Ion-exchange selectivity of phillipsite for Cs+ : a structural investigation using the Rietveld method. Microporous Mesoporous Mater 32:319–329

    Article  Google Scholar 

  • Gualtieri AF, Passaglia E, Galli E, Viani A (1999b) Rietveld structure refinement of Sr-exchanged phillipsites. Microporous Mesoporous Mater 31:33–43

    Article  Google Scholar 

  • Gualtieri AF, Passaglia E, Galli E (2000) Rietveld structure refinement of natural and Na-, K-, Ca-, and Ba-exchanged phillipsites. In: Colella C, Mumpton FA (eds) Natural zeolites for the third millennium. De Frede, Naples, pp 93–110

    Google Scholar 

  • Langella A, Cappelletti P, de’ Gennaro R (2001) Zeolites in closed hydrologic systems. Rev Mineral Geochem 45:235–260

    Article  Google Scholar 

  • Lotti P, Gatta GD, Comboni D, Merlini M, Pastero L, Hanfland M (2016) AlPO4-5 zeolite at high pressure: crystal–fluid interaction and elastic behaviour. Microporous Mesoporous Mater 228:158–167

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800-kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Passaglia E, Sheppard RA (2001) The crystal chemistry of zeolites. Rev Mineral Geochem 45:69–116

    Article  Google Scholar 

  • Passaglia E, Galli E, Gualtieri AF (2000) Natural zeolites for the third millennium. De Frede, Naples, pp 259–267

    Google Scholar 

  • Petříček V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallogr 229:345–352

    Google Scholar 

  • Rinaldi R, Pluth JL, Smith JV (1974) Zeolites of the phillipsite family. Refinement of the crystal structure of phillipsite and harmotome. Acta Crystallogr B 30:2426–2433

    Article  Google Scholar 

  • Rinaldi R, Smith JV, Jung G (1975) Chemistry and paragenesis of faujasite, phillipsite, and offretite from Sasbach, Kaiserstuhl, Germany. Neues Jahrb Miner Mon 10:433–443

    Google Scholar 

  • Rothkirch A, Gatta GD, Meyer M, Merkel S, Merlini M, Liermann H-P (2013) Single-crystal diffraction at the Extreme Conditions beamline P02.2: procedure for collecting and analyzing high-pressure single-crystal data. J Synchrotron Radiat 20:711–720

    Article  Google Scholar 

  • Sani A, Cruciani G, Gualtieri AF (2002) Dehydration dynamics of Ba-phillipsite: an in situ synchrotron powder diffraction study. Phys Chem Miner 29:351–361

    Article  Google Scholar 

  • Steinfink H (1962) The crystal structure of the zeolite phillipsite. Acta Crystallogr 15:644–651

    Article  Google Scholar 

  • Stuckenschmidt E, Fuess H, Kvick A (1990) Investigation of the structure of harmotome by X-ray (293 K, 100 K) and neutron-diffraction (15 K). Eur J Mineral 2:861–874

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Italian Ministry of Education, MIUR-Project: “Futuro in Ricerca 2012—ImPACT—RBFR12CLQD.” DESY—PETRA III (Hamburg) is thanked for the allocation of beamtime. Y. Lee is thanked for the sample of phillipsite from Richmond, Victoria, Australia. Two anonymous reviewers are thanked for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Diego Gatta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comboni, D., Gatta, G.D., Lotti, P. et al. On the P-induced behavior of the zeolite phillipsite: an in situ single-crystal synchrotron X-ray diffraction study. Phys Chem Minerals 44, 1–20 (2017). https://doi.org/10.1007/s00269-016-0832-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-016-0832-7

Keywords

Navigation