Skip to main content
Log in

MicroRNAs: Relevant Tools for a Colorectal Surgeon?

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Colorectal cancer is the third most common malignancy and cause of cancer-related deaths worldwide. Approximately half of the patients diagnosed with colorectal cancer ultimately die of the condition. Death from colorectal cancer can be prevented by early detection, but unfortunately presentation is often late, with a worse prognosis. Screening by fecal occult blood testing reduces disease-specific mortality, but there is a need for sensitive and specific noninvasive biomarkers to facilitate detecting the disease, staging it, and predicting the best therapeutic options. MicroRNAs (miRNAs) are short noncoding RNA sequences that have a crucial role in the regulation of gene expression. They have significant regulatory functions in basic cellular processes, such as cell differentiation, proliferation, and apoptosis. Evidence suggests that miRNAs may function as both tumor suppressors and oncogenes. The main mechanism for changes in the function of miRNAs in cancer cells is due to aberrant gene expression. Accurate discrimination of miRNA profiles between tumor and normal mucosa in colorectal cancer allows definition of specific expression patterns of miRNAs, giving good potential as diagnostic and therapeutic targets. MiRNAs expressed in colorectal cancers are also abundantly present and stable in stool and plasma samples. Their extraction from these three sources is feasible and reproducible. The ease and reliability of determining miRNA profiles in plasma or stool makes them potential molecular markers for colorectal cancer screening. This review summarizes the role miRNAs have in colorectal cancer, highlighting particularly the potential diagnostic, prognostic, and therapeutic implications in the future treatment of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Figueredo A, Coombes ME, Mukherjee S (2008) Adjuvant therapy for completely resected stage II colon cancer. Cochrane Database Syst Rev CD005390

  3. Rothwell PM, Wilson M, Elwin CE et al (2010) Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376:1741–1750

    Article  PubMed  CAS  Google Scholar 

  4. Sassen S, Miska EA, Caldas C (2008) MicroRNA: implications for cancer. Virchows Arch 452:1–10

    Article  PubMed  CAS  Google Scholar 

  5. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  PubMed  CAS  Google Scholar 

  6. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

  7. Esquela-Kerscher A, Slack FJ (2006) Oncomirs: microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  8. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  PubMed  CAS  Google Scholar 

  9. Aslam MI, Taylor K, Pringle JH et al (2009) MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg 96:702–710

    Article  PubMed  CAS  Google Scholar 

  10. Hewitson P, Glasziou P, Irwig L, et al (2007) Screening for colorectal cancer using the faecal occult blood test, Hemoccult. Cochrane Database Syst Rev CD001216

  11. Graser A, Stieber P, Nagel D et al (2009) Comparison of CT colonography, colonoscopy, sigmoidoscopy and faecal occult blood tests for the detection of advanced adenoma in an average risk population. Gut 58:241–248

    Article  PubMed  CAS  Google Scholar 

  12. Hewitson P, Glasziou P, Watson E et al (2008) Cochrane systematic review of colorectal cancer screening using the fecal occult blood test (Hemoccult): an update. Am J Gastroenterol 103:1541–1549

    Article  PubMed  Google Scholar 

  13. Lieberman DA, Weiss DG (2001) One-time screening for colorectal cancer with combined fecal occult-blood testing and examination of the distal colon. N Engl J Med 345:555–560

    Article  PubMed  CAS  Google Scholar 

  14. Bond JH (2006) The place of fecal occult blood test in colorectal cancer screening in 2006: the U.S. perspective. Am J Gastroenterol 101:219–221

    Article  PubMed  Google Scholar 

  15. Ahlquist DA, McGill DB, Fleming JL et al (1989) Patterns of occult bleeding in asymptomatic colorectal cancer. Cancer 63:1826–1830

    Article  PubMed  CAS  Google Scholar 

  16. Tibble J, Sigthorsson G, Foster R et al (2001) Faecal calprotectin and faecal occult blood tests in the diagnosis of colorectal carcinoma and adenoma. Gut 49:402–408

    Article  PubMed  CAS  Google Scholar 

  17. Herzog P, Holtermuller KH, Preiss J et al (1982) Fecal blood loss in patients with colonic polyps: a comparison of measurements with 51chromium-labeled erythrocytes and with the Haemoccult test. Gastroenterology 83:957–962

    PubMed  CAS  Google Scholar 

  18. Macrae FA, St John DJ (1982) Relationship between patterns of bleeding and Hemoccult sensitivity in patients with colorectal cancers or adenomas. Gastroenterology 82:891–898

    PubMed  CAS  Google Scholar 

  19. Leung WK, To KF, Man EP et al (2007) Detection of hypermethylated DNA or cyclooxygenase-2 messenger RNA in fecal samples of patients with colorectal cancer or polyps. Am J Gastroenterol 102:1070–1076

    Article  PubMed  CAS  Google Scholar 

  20. Hamaya Y, Yoshida K, Takai T et al (2010) Factors that contribute to faecal cyclooxygenase-2 mRNA expression in subjects with colorectal cancer. Br J Cancer 102:916–921

    Article  PubMed  CAS  Google Scholar 

  21. Kanaoka S, Yoshida K, Miura N et al (2004) Potential usefulness of detecting cyclooxygenase 2 messenger RNA in feces for colorectal cancer screening. Gastroenterology 127:422–427

    Article  PubMed  CAS  Google Scholar 

  22. Ahmed FE, Jeffries CD, Vos PW et al (2009) Diagnostic microRNA markers for screening sporadic human colon cancer and active ulcerative colitis in stool and tissue. Cancer Genomics Proteomics 6:281–295

    PubMed  CAS  Google Scholar 

  23. Link A, Balaguer F, Shen Y et al (2010) Fecal microRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev 19:1766–1774

    Article  PubMed  CAS  Google Scholar 

  24. Kalimutho M, Del Vecchio Blanco G, Di Cecilia S et al (2011) Differential expression of miR-144* as a novel fecal-based diagnostic marker for colorectal cancer. J Gastroenterol 46:1391–1402

    Article  PubMed  CAS  Google Scholar 

  25. Wu CW, Ng SS, Dong YJ, et al (2012) Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut 61:739–745

    Article  PubMed  Google Scholar 

  26. Tsouma A, Aggeli C, Pissimissis N et al (2008) Circulating tumor cells in colorectal cancer: detection methods and clinical significance. Anticancer Res 28:3945–3960

    PubMed  Google Scholar 

  27. Dong Y, Wu WK, Wu CW et al (2011) MicroRNA dysregulation in colorectal cancer: a clinical perspective. Br J Cancer 104:893–898

    Article  PubMed  CAS  Google Scholar 

  28. Ahlquist DA (2010) Molecular detection of colorectal neoplasia. Gastroenterology 138:2127–2139

    Article  PubMed  CAS  Google Scholar 

  29. Koga Y, Yasunaga M, Takahashi A et al (2010) MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prev Res (Phila) 3:1435–1442

    Article  Google Scholar 

  30. Tan E, Gouvas N, Nicholls RJ et al (2009) Diagnostic precision of carcinoembryonic antigen in the detection of recurrence of colorectal cancer. Surg Oncol 18:15–24

    Article  PubMed  Google Scholar 

  31. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518

    Article  PubMed  CAS  Google Scholar 

  32. Gilad S, Meiri E, Yogev Y et al (2008) Serum microRNAs are promising novel biomarkers. PLoS One 3:e3148

    Article  PubMed  CAS  Google Scholar 

  33. Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    Article  PubMed  CAS  Google Scholar 

  34. Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133:217–222

    Article  PubMed  CAS  Google Scholar 

  35. Monzo M, Navarro A, Bandres E et al (2008) Overlapping expression of microRNAs in human embryonic colon and colorectal cancer. Cell Res 18:823–833

    Article  PubMed  CAS  Google Scholar 

  36. Ng EK, Chong WW, Jin H et al (2009) Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 58:1375–1381

    Article  PubMed  CAS  Google Scholar 

  37. Huang Z, Huang D, Ni S et al (2010) Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 127:118–126

    Article  PubMed  CAS  Google Scholar 

  38. Cheng H, Zhang L, Cogdell DE et al (2011) Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One 6:e17745

    Article  PubMed  CAS  Google Scholar 

  39. Schetter AJ, Harris CC (2009) Plasma microRNAs: a potential biomarker for colorectal cancer? Gut 58:1318–1319

    Article  PubMed  Google Scholar 

  40. Qu H, Xu W, Huang Y et al (2011) Circulating miRNAs: promising biomarkers of human cancer. Asian Pac J Cancer Prev 12:1117–1125

    PubMed  Google Scholar 

  41. Pu XX, Huang GL, Guo HQ et al (2010) Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol 25:1674–1680

    Article  PubMed  CAS  Google Scholar 

  42. Wang LG, Gu J (2012) Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis. Cancer Epidemiol 36:e61–e67

    Article  PubMed  CAS  Google Scholar 

  43. Walsh JM, Terdiman JP (2003) Colorectal cancer screening: scientific review. JAMA 289:1288–1296

    Article  PubMed  Google Scholar 

  44. Van Schaeybroeck S, Allen WL, Turkington RC et al (2011) Implementing prognostic and predictive biomarkers in CRC clinical trials. Nat Rev Clin Oncol 8:222–232

    Article  PubMed  CAS  Google Scholar 

  45. Lombardi L, Morelli F, Cinieri S et al (2010) Adjuvant colon cancer chemotherapy: where we are and where we’ll go. Cancer Treat Rev 36(Suppl 3):S34–S41

    Article  PubMed  CAS  Google Scholar 

  46. Benson AB 3rd, Schrag D, Somerfield MR et al (2004) American Society of Clinical Oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J Clin Oncol 22:3408–3419

    Article  PubMed  Google Scholar 

  47. Mosakhani N, Sarhadi VK, Borze I et al (2012) MicroRNA profiling differentiates colorectal cancer according to KRAS status. Genes Chromosomes Cancer 51:1–9

    Article  PubMed  CAS  Google Scholar 

  48. Paranjape T, Slack FJ, Weidhaas JB (2009) MicroRNAs: tools for cancer diagnostics. Gut 58:1546–1554

    Article  PubMed  CAS  Google Scholar 

  49. Li M, Marin-Muller C, Bharadwaj U et al (2009) MicroRNAs: control and loss of control in human physiology and disease. World J Surg 33:667–684. doi:10.1007/s00268-008-9836-x

    Article  PubMed  Google Scholar 

  50. Huang ZM, Yang J, Shen XY et al (2009) MicroRNA expression profile in non-cancerous colonic tissue associated with lymph node metastasis of colon cancer. J Dig Dis 10:188–194

    Article  PubMed  CAS  Google Scholar 

  51. Selcuklu SD, Donoghue MT, Spillane C (2009) miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans 37:918–925

    Article  PubMed  CAS  Google Scholar 

  52. Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467:86–90

    Article  PubMed  CAS  Google Scholar 

  53. Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    Article  PubMed  CAS  Google Scholar 

  54. Krichevsky AM, Gabriely G (2009) miR-21: a small multi-faceted RNA. J Cell Mol Med 13:39–53

    Article  PubMed  CAS  Google Scholar 

  55. Slaby O, Svoboda M, Fabian P et al (2007) Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 72:397–402

    Article  PubMed  CAS  Google Scholar 

  56. Schetter AJ, Leung SY, Sohn JJ et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436

    Article  PubMed  CAS  Google Scholar 

  57. Kulda V, Pesta M, Topolcan O et al (2010) Relevance of miR-21 and miR-143 expression in tissue samples of colorectal carcinoma and its liver metastases. Cancer Genet Cytogenet 200:154–160

    Article  PubMed  CAS  Google Scholar 

  58. Bellows CF, Jaffe B, Bacigalupo L et al (2011) Clinical significance of magnetic resonance imaging findings in rectal cancer. World J Radiol 3:92–104

    Article  PubMed  Google Scholar 

  59. Beets-Tan RG, Beets GL (2004) Rectal cancer: review with emphasis on MR imaging. Radiology 232:335–346

    Article  PubMed  Google Scholar 

  60. UK National Cancer Research Institute’s Colorectal Cancer Clinical Studies Group (2008) FOxTROT Protocol. Available at: http://www.foxtrot.bham.ac.uk/FOxTROT_Protocol_v4.pdf/. Accessed 15 May 2011

  61. Nakajima G, Hayashi K, Xi Y et al (2006) Non-coding microRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics 3:317–324

    PubMed  CAS  Google Scholar 

  62. Diaz R, Silva J, Garcia JM et al (2008) Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer 47:794–802

    Article  PubMed  CAS  Google Scholar 

  63. Diosdado B, van de Wiel MA, Terhaar Sive Droste JS et al (2009) MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br J Cancer 101:707–714

    Article  PubMed  CAS  Google Scholar 

  64. Motoyama K, Inoue H, Takatsuno Y et al (2009) Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol 34:1069–1075

    PubMed  CAS  Google Scholar 

  65. Shibuya H, Iinuma H, Shimada R et al (2010) Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer. Oncology 79:313–320

    Article  PubMed  CAS  Google Scholar 

  66. Bandres E, Cubedo E, Agirre X et al (2006) Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5:29

    Article  PubMed  CAS  Google Scholar 

  67. Wang CJ, Zhou ZG, Wang L et al (2009) Clinicopathological significance of microRNA-31, -143 and -145 expression in colorectal cancer. Dis Markers 26:27–34

    PubMed  Google Scholar 

  68. Nishida N, Yokobori T, Mimori K et al (2011) MicroRNA miR-125b is a prognostic marker in human colorectal cancer. Int J Oncol 38:1437–1443

    Article  PubMed  CAS  Google Scholar 

  69. Akcakaya P, Ekelund S, Kolosenko I et al (2011) miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int J Oncol 39:311–318

    PubMed  Google Scholar 

  70. Chen Y, Song Y, Wang Z et al (2010) Altered expression of MiR-148a and MiR-152 in gastrointestinal cancers and its clinical significance. J Gastrointest Surg 14:1170–1179

    Article  PubMed  Google Scholar 

  71. Ma Y, Zhang P, Wang F, et al (2011) miR-150 as a potential biomarker associated with prognosis and therapeutic outcome in colorectal cancer. Gut [Epub ahead of print]

  72. Xi Y, Formentini A, Chien M et al (2006) Prognostic values of microRNAs in colorectal cancer. Biomark Insights 2:113–121

    PubMed  Google Scholar 

  73. Schepeler T, Reinert JT, Ostenfeld MS et al (2008) Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res 68:6416–6424

    Article  PubMed  CAS  Google Scholar 

  74. Andre T, Afchain P, Barrier A et al (2007) Current status of adjuvant therapy for colon cancer. Gastrointest Cancer Res 1:90–97

    PubMed  Google Scholar 

  75. Gill S, Loprinzi CL, Sargent DJ et al (2004) Pooled analysis of fluorouracil-based adjuvant therapy for stage II and III colon cancer: who benefits and by how much? J Clin Oncol 22:1797–1806

    Article  PubMed  CAS  Google Scholar 

  76. Wang Y, Jatkoe T, Zhang Y et al (2004) Gene expression profiles and molecular markers to predict recurrence of Dukes’ B colon cancer. J Clin Oncol 22:1564–1571

    Article  PubMed  CAS  Google Scholar 

  77. Nielsen BS, Jorgensen S, Fog JU et al (2011) High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis 28:27–28

    Article  PubMed  CAS  Google Scholar 

  78. MacFarlane JK, Ryall RD, Heald RJ (1993) Mesorectal excision for rectal cancer. Lancet 341:457–460

    Article  PubMed  CAS  Google Scholar 

  79. Havenga K, Enker WE, Norstein J et al (1999) Improved survival and local control after total mesorectal excision or D3 lymphadenectomy in the treatment of primary rectal cancer: an international analysis of 1411 patients. Eur J Surg Oncol 25:368–374

    Article  PubMed  CAS  Google Scholar 

  80. Frederiksen CM, Knudsen S, Laurberg S et al (2003) Classification of Dukes’ B and C colorectal cancers using expression arrays. J Cancer Res Clin Oncol 129:263–271

    PubMed  Google Scholar 

  81. Simon R, Radmacher MD, Dobbin K et al (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 95:14–18

    Article  PubMed  CAS  Google Scholar 

  82. Khan J, Wei JS, Ringner M et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673–679

    Article  PubMed  CAS  Google Scholar 

  83. Chang KH, Miller N, Kheirelseid EA et al (2011) MicroRNA signature analysis in colorectal cancer: identification of expression profiles in stage II tumors associated with aggressive disease. Int J Colorectal Dis 26:1415–1422

    Article  PubMed  Google Scholar 

  84. Ribic CM, Sargent DJ, Moore MJ et al (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349:247–257

    Article  PubMed  CAS  Google Scholar 

  85. Lanza G, Ferracin M, Gafa R et al (2007) mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer 6:54

    Article  PubMed  CAS  Google Scholar 

  86. Jemal A, Siegel R, Ward E et al (2007) Cancer statistics, 2007. CA Cancer J Clin 57:43–66

    Article  PubMed  Google Scholar 

  87. Misiakos EP, Karidis NP, Kouraklis G (2011) Current treatment for colorectal liver metastases. World J Gastroenterol 17:4067–4075

    Article  PubMed  Google Scholar 

  88. Bozzetti F, Doci R, Bignami P et al (1987) Patterns of failure following surgical resection of colorectal cancer liver metastases: rationale for a multimodal approach. Ann Surg 205:264–270

    Article  PubMed  CAS  Google Scholar 

  89. Cunningham D, Humblet Y, Siena S et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345

    Article  PubMed  CAS  Google Scholar 

  90. White RR, Avital I, Sofocleous CT et al (2007) Rates and patterns of recurrence for percutaneous radiofrequency ablation and open wedge resection for solitary colorectal liver metastasis. J Gastrointest Surg 11:256–263

    Article  PubMed  CAS  Google Scholar 

  91. Scheele J, Stang R, Altendorf-Hofmann A et al (1995) Resection of colorectal liver metastases. World J Surg 19:59–71. doi:10.1007/BF00316981

    Article  PubMed  CAS  Google Scholar 

  92. Bismuth H, Adam R, Levi F et al (1996) Resection of nonresectable liver metastases from colorectal cancer after neoadjuvant chemotherapy. Ann Surg 224:509–520 discussion 520–502

    Article  PubMed  CAS  Google Scholar 

  93. Kahlert C, Klupp F, Brand K et al (2011) Invasion front-specific expression and prognostic significance of microRNA in colorectal liver metastases. Cancer Sci 102:1799–1807

    Article  PubMed  CAS  Google Scholar 

  94. Ma Y, Zhang P, Yang J et al (2011) Candidate microRNA biomarkers in human colorectal cancer: systematic review profiling studies and experimental validation. Int J Cancer 130:2077–2087

    Article  PubMed  CAS  Google Scholar 

  95. Sempere LF, Preis M, Yezefski T et al (2010) Fluorescence-based codetection with protein markers reveals distinct cellular compartments for altered microRNA expression in solid tumors. Clin Cancer Res 16:4246–4255

    Article  PubMed  CAS  Google Scholar 

  96. Chan SK, Griffith OL, Tai IT et al (2008) Meta-analysis of colorectal cancer gene expression profiling studies identifies consistently reported candidate biomarkers. Cancer Epidemiol Biomarkers Prev 17:543–552

    Article  PubMed  CAS  Google Scholar 

  97. Vickers MM, Bar J, Gorn-Hondermann I et al (2012) Stage-dependent differential expression of microRNAs in colorectal cancer: potential role as markers of metastatic disease. Clin Exp Metastasis 29:123–132

    Article  PubMed  CAS  Google Scholar 

  98. Di Fiore F, Sesboue R, Michel P et al (2010) Molecular determinants of anti-EGFR sensitivity and resistance in metastatic colorectal cancer. Br J Cancer 103:1765–1772

    Article  PubMed  CAS  Google Scholar 

  99. Loupakis F, Ruzzo A, Cremolini C et al (2009) KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer 101:715–721

    Article  PubMed  CAS  Google Scholar 

  100. Zhang W, Winder T, Ning Y et al (2011) A let-7 microRNA-binding site polymorphism in 3’-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy. Ann Oncol 22:104–109

    Article  PubMed  CAS  Google Scholar 

  101. Ragusa M, Majorana A, Statello L et al (2010) Specific alterations of microRNA transcriptome and global network structure in colorectal carcinoma after cetuximab treatment. Mol Cancer Ther 9:3396–3409

    Article  PubMed  CAS  Google Scholar 

  102. Zhou J, Zhou Y, Yin B et al (2010) 5-Fluorouracil and oxaliplatin modify the expression profiles of microRNAs in human colon cancer cells in vitro. Oncol Rep 23:121–128

    PubMed  CAS  Google Scholar 

  103. Gmeiner WH, Reinhold WC, Pommier Y (2010) Genome-wide mRNA and microRNA profiling of the NCI 60 cell-line screen and comparison of FdUMP[10] with fluorouracil, floxuridine, and topoisomerase 1 poisons. Mol Cancer Ther 9:3105–3114

    Article  PubMed  CAS  Google Scholar 

  104. Boman BM, Huang E (2008) Human colon cancer stem cells: a new paradigm in gastrointestinal oncology. J Clin Oncol 26:2828–2838

    Article  PubMed  Google Scholar 

  105. Dallas NA, Xia L, Fan F et al (2009) Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res 69:1951–1957

    Article  PubMed  CAS  Google Scholar 

  106. Bitarte N, Bandres E, Boni V et al (2011) MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells 29:1661–1671

    Article  PubMed  CAS  Google Scholar 

  107. Rossi L, Bonmassar E, Faraoni I (2007) Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res 56:248–253

    Article  PubMed  CAS  Google Scholar 

  108. Slampa P, Kocakova I, Sefr R et al (2004) Neoadjuvant treatment for locally advanced rectal adenocarcinoma with concomitant radiotherapy and oral capecitabine. J BUON 9:33–40

    PubMed  CAS  Google Scholar 

  109. Kim JC, Kim TW, Kim JH et al (2005) Preoperative concurrent radiotherapy with capecitabine before total mesorectal excision in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 63:346–353

    Article  PubMed  CAS  Google Scholar 

  110. Das P, Lin EH, Bhatia S et al (2006) Preoperative chemoradiotherapy with capecitabine versus protracted infusion 5-fluorouracil for rectal cancer: a matched-pair analysis. Int J Radiat Oncol Biol Phys 66:1378–1383

    Article  PubMed  CAS  Google Scholar 

  111. Svoboda M, Izakovicova Holla L, Sefr R et al (2008) Micro-RNAs miR125b and miR137 are frequently upregulated in response to capecitabine chemoradiotherapy of rectal cancer. Int J Oncol 33:541–547

    PubMed  CAS  Google Scholar 

  112. Song B, Wang Y, Titmus MA et al (2010) Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer 9:96

    Article  PubMed  CAS  Google Scholar 

  113. Li XM, Wang AM, Zhang J et al (2010) Down-regulation of miR-126 expression in colorectal cancer and its clinical significance. Med Oncol 28:1054–1057

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The author declares that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Peacock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peacock, O., Lee, A.C., Larvin, M. et al. MicroRNAs: Relevant Tools for a Colorectal Surgeon?. World J Surg 36, 1881–1892 (2012). https://doi.org/10.1007/s00268-012-1603-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-012-1603-3

Keywords

Navigation