Skip to main content

Advertisement

Log in

Improvement of STING-mediated cancer immunotherapy using immune checkpoint inhibitors as a game-changer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Various cancer therapies, such as surgery, radiotherapy, chemotherapy, and immunotherapy, have been used to treat cancer. Among cancer immunotherapies, stimulators of interferon genes (STING) activate various immune cells and induce them to attack cancer cells. However, the secretion of type I interferon (IFN α and β) increases after stimulation of the immune cell as a side effect of STING agonist, thereby increasing the expression of programmed death-ligand 1 (PD-L1) in the tumor microenvironment (TME). Therefore, it is necessary to reduce the side effects of STING agonists and maximize cancer treatment by administering combination therapy. Tumor-bearing mice were treated with cisplatin, tumor-specific peptide, neoantigen, DMXAA (STING agonist), and immune checkpoint inhibitor (ICI). The combination vaccine group showed a reduction in tumor mass, an increased survival rate, and IFN-γ+ (interferon gamma) CD8+ (cluster of differentiation 8) T cells in the spleen and TME. The distribution of immune cells in the spleen and TME was confirmed, and the number of active immune cells increased, whereas that of immunosuppressive cells decreased. When measuring cytokine levels in the tumor and serum, the levels of pro-inflammatory cytokines increased and anti-inflammatory cytokines decreased. This study demonstrated that when various cancer therapies are combined to treat cancer, it can lead to an anticancer immune synergistic effect by increasing the immune response and reducing side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The datasets analyzed in the current study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Arruebo M, Vilaboa N, Saez-Gutierrez B, Lambea J, Tres A, Valladares M, Gonzalez-Fernandez A (2011) Assessment of the evolution of cancer treatment therapies. Cancers 3:3279–3330. https://doi.org/10.3390/cancers3033279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blank CU, Rozeman EA, Fanchi LF et al (2018) Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat Med 24:1655–1661. https://doi.org/10.1038/s41591-018-0198-0

    Article  CAS  PubMed  Google Scholar 

  3. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL, Siegel RL (2019) Cancer treatment and survivorship statistics, 2019. CA A Cancer J Clin 69:363–385. https://doi.org/10.3322/caac.21565

    Article  Google Scholar 

  4. Richardson JL, Marks G, Levine A (1988) The influence of symptoms of disease and side effects of treatment on compliance with cancer therapy. J Clin Oncol 6:1746–1752. https://doi.org/10.1200/jco.1988.6.11.1746

    Article  CAS  PubMed  Google Scholar 

  5. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12:237–251. https://doi.org/10.1038/nrc3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Waldman AD, Fritz JM, Lenardo MJ (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20:651–668. https://doi.org/10.1038/s41577-020-0306-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296. https://doi.org/10.1146/annurev.immunol.25.022106.141609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park HJ, Jang G-Y, Kim YS et al (2019) A novel TLR4 binding protein, 40S ribosomal protein S3, has potential utility as an adjuvant in a dendritic cell-based vaccine. J Immunother Cancer 7:60. https://doi.org/10.1186/s40425-019-0539-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kang TH, Park JH, Yang A et al (2020) Annexin A5 as an immune checkpoint inhibitor and tumor-homing molecule for cancer treatment. Nat Commun 11:1137. https://doi.org/10.1038/s41467-020-14821-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin Y, Xu J, Lan H (2019) Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 12:76. https://doi.org/10.1186/s13045-019-0760-3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Peng M, Mo Y, Wang Y et al (2019) Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer 18:128. https://doi.org/10.1186/s12943-019-1055-6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li L, Goedegebuure SP, Gillanders W (2020) Cancer vaccines: shared tumor antigens return to the spotlight. Sig Transduct Target Ther 5:251. https://doi.org/10.1038/s41392-020-00364-8

    Article  Google Scholar 

  13. Hiam-Galvez KJ, Allen BM, Spitzer MH (2021) Systemic immunity in cancer. Nat Rev Cancer. https://doi.org/10.1038/s41568-021-00347-z

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nam G-H, Choi Y, Kim GB, Kim S, Kim SA, Kim I-S (2020) Emerging prospects of exosomes for cancer treatment: from conventional therapy to immunotherapy. Adv Mater 32:2002440. https://doi.org/10.1002/adma.202002440

    Article  CAS  Google Scholar 

  15. Budhwani M, Mazzieri R, Dolcetti R (2018) Plasticity of type I interferon-mediated responses in cancer therapy: from anti-tumor immunity to resistance. Front Oncol. https://doi.org/10.3389/fonc.2018.00322

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lu C, Klement JD, Ibrahim ML, Xiao W, Redd PS, Nayak-Kapoor A, Zhou G, Liu K (2019) Type I interferon suppresses tumor growth through activating the STAT3-granzyme B pathway in tumor-infiltrating cytotoxic T lymphocytes. J Immunother Cancer 7:157. https://doi.org/10.1186/s40425-019-0635-8

    Article  PubMed  PubMed Central  Google Scholar 

  17. Aricò E, Castiello L, Capone I, Gabriele L, Belardelli F (2019) Type I interferons and cancer: an evolving story demanding novel clinical applications. Cancers 11:1943

    Article  Google Scholar 

  18. Su T, Zhang Y, Valerie K, Wang X-Y, Lin S, Zhu G (2019) STING activation in cancer immunotherapy. Theranostics 9:7759–7771. https://doi.org/10.7150/thno.37574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li A, Yi M, Qin S, Song Y, Chu Q, Wu K (2019) Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J Hematol Oncol 12:35. https://doi.org/10.1186/s13045-019-0721-x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hervas-Stubbs S, Perez-Gracia JL, Rouzaut A, Sanmamed MF, Le Bon A, Melero I (2011) Direct effects of type I interferons on cells of the immune system. Clin Cancer Res 17:2619–2627. https://doi.org/10.1158/1078-0432.ccr-10-1114

    Article  CAS  PubMed  Google Scholar 

  21. Zhu Y, An X, Zhang X, Qiao Y, Zheng T, Li X (2019) STING: a master regulator in the cancer-immunity cycle. Mol Cancer 18:152. https://doi.org/10.1186/s12943-019-1087-y

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jiang M, Chen P, Wang L et al (2020) cGAS-STING, an important pathway in cancer immunotherapy. J Hematol Oncol 13:81. https://doi.org/10.1186/s13045-020-00916-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barber GN (2015) STING: infection, inflammation and cancer. Nat Rev Immunol 15:760–770. https://doi.org/10.1038/nri3921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang H, Lee WS, Kong SJ et al (2019) STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. J Clin Investig 129:4350–4364. https://doi.org/10.1172/JCI125413

    Article  PubMed  PubMed Central  Google Scholar 

  25. Patel SA, Minn AJ (2018) Combination cancer therapy with immune checkpoint blockade: mechanisms and strategies. Immunity 48:417–433. https://doi.org/10.1016/j.immuni.2018.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yi M, Niu M, Xu L, Luo S, Wu K (2021) Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol 14:10. https://doi.org/10.1186/s13045-020-01027-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Luo J, Alu A, Han X, Wei Y, Wei X (2020) cGAS-STING pathway in cancer biotherapy. Mol Cancer 19:136. https://doi.org/10.1186/s12943-020-01247-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sambi M, Bagheri L, Szewczuk MR (2019) Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. J Oncol 2019:4508794. https://doi.org/10.1155/2019/4508794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang T, Huang X, Zhang G, Hong Z, Bai X, Liang T (2021) Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Sig Transduct Target Ther 6:72. https://doi.org/10.1038/s41392-020-00449-4

    Article  Google Scholar 

  30. Murciano-Goroff YR, Warner AB, Wolchok JD (2020) The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res 30:507–519. https://doi.org/10.1038/s41422-020-0337-2

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kreiter S, Vormehr M, van de Roemer N et al (2015) Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520:692–696. https://doi.org/10.1038/nature14426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang T, Shi T, Zhang H, Hu J, Song Y, Wei J, Ren S, Zhou C (2019) Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol 12:93. https://doi.org/10.1186/s13045-019-0787-5

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zheng J, Mo J, Zhu T et al (2020) Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy. Mol Cancer 19:133. https://doi.org/10.1186/s12943-020-01250-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Borst J, Ahrends T, Bąbała N, Melief CJM, Kastenmüller W (2018) CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol 18:635–647. https://doi.org/10.1038/s41577-018-0044-0

    Article  CAS  PubMed  Google Scholar 

  35. Corrales L, Glickman LH, McWhirter SM et al (2015) Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11:1018–1030. https://doi.org/10.1016/j.celrep.2015.04.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song L, Yang MC, Knoff J, Wu TC, Hung CF (2014) Cancer immunotherapy employing an innovative strategy to enhance CD4+ T cell help in the tumor microenvironment. PLoS ONE 9:e115711. https://doi.org/10.1371/journal.pone.0115711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu CY, Monie A, Pang X, Hung CF, Wu TC (2010) Improving therapeutic HPV peptide-based vaccine potency by enhancing CD4+ T help and dendritic cell activation. J Biomed Sci 17:88. https://doi.org/10.1186/1423-0127-17-88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hradilova N, Sadilkova L, Palata O, Mysikova D, Mrazkova H, Lischke R, Spisek R, Adkins I (2017) Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immunotherapy. PLoS ONE 12:e0171539. https://doi.org/10.1371/journal.pone.0171539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee EJ, Jang G-Y, Lee SE, Jw L, Han HD, Park Y-M, Kang TH (2021) A novel form of immunotherapy using antigen peptides conjugated on PD-L1 antibody. Immunol Lett 240:137–148. https://doi.org/10.1016/j.imlet.2021.10.006

    Article  CAS  PubMed  Google Scholar 

  40. Blass E, Ott PA (2021) Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol 18:215–229. https://doi.org/10.1038/s41571-020-00460-2

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen F, Zou Z, Du J et al (2019) Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. J Clin Investig 129:2056–2070. https://doi.org/10.1172/JCI99538

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yarchoan M, Johnson BA, Lutz ER, Laheru DA, Jaffee EM (2017) Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 17:209–222. https://doi.org/10.1038/nrc.2016.154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu H, Kuang X, Zhang Y et al (2020) ADORA1 inhibition promotes tumor immune evasion by regulating the ATF3-PD-L1 Axis. Cancer Cell 37:324-339.e8. https://doi.org/10.1016/j.ccell.2020.02.006

    Article  CAS  PubMed  Google Scholar 

  44. Herbst RS, Soria J-C, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567. https://doi.org/10.1038/nature14011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by National Research Foundation of Korea (NRF) Grants funded by the Korean government (NRF-2016R1A5A2012284 and NRF-2018R1A2B6008455).

Author information

Authors and Affiliations

Authors

Contributions

SEL, GYJ, HDH, YMP, and THK designed experiments. SEL, GYJ, JWL, and SHP conducted experiments. SEL and THK analyzed the data and wrote the manuscript. HDH verified the statistical methods used. All the authors provided critical feedback and contributed to the final manuscript. THK supervised this project.

Corresponding authors

Correspondence to Yeong-Min Park or Tae Heung Kang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Consent to participate

In the name of all the authors, I gave my full consent to participate.

Consent for publication

I have given my full consent for publication in the name of all authors.

Ethics approval

All animal experiments were approved by the Konkuk University Institutional Animal Care Use Committee (IACUC, KU20104).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 701 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.E., Jang, GY., Lee, J.w. et al. Improvement of STING-mediated cancer immunotherapy using immune checkpoint inhibitors as a game-changer. Cancer Immunol Immunother 71, 3029–3042 (2022). https://doi.org/10.1007/s00262-022-03220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03220-6

Keywords

Navigation