Skip to main content

Advertisement

Log in

Efficacy and safety of peptide receptor radionuclide therapy with [177Lu]Lu-DOTA-TATE in 15 patients with progressive treatment-refractory meningioma

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

There is no evidence-based systemic therapy for patients with progressive meningiomas for whom surgery or external radiotherapy is no longer an option. In this study, the efficacy and safety of peptide receptor radionuclide therapy (PRRT) in patients with progressive, treatment-refractory meningiomas were evaluated.

Methods

Retrospective analysis of all meningioma patients treated with [177Lu]Lu-DOTA-TATE from 2000 to 2020 in our centre. Primary outcomes were response according to RANO bidimensional and volumetric criteria and progression-free survival (PFS). Overall survival (OS) and tumour growth rate (TGR) were secondary endpoints. TGR was calculated as the percentage change in surface or volume per month.

Results

Fifteen meningioma patients received [177Lu]Lu-DOTA-TATE (7.5–29.6 GBq). Prior to PRRT, all patients had received external radiotherapy, and 14 patients had undergone surgery. All WHO grades were included WHO 1 (n=3), WHO 2 (n=5), and WHO 3 (n=6). After PRRT, stable disease was observed in six (40%) patients. The median PFS was 7.8 months with a 6-month PFS rate of 60%. The median OS was 13.6 months with a 12-month OS rate of 60%. All patients had progressive disease prior to PRRT, with an average TGR of 4.6% increase in surface and 14.8% increase in volume per month. After PRRT, TGR declined to 3.1% in surface (p=0.016) and 5.0% in volume (p=0.013) per month.

Conclusion

In this cohort of meningioma patients with exhaustion of surgical and radiotherapeutic options and progressive disease, it was shown that PRRT plays a role in controlling tumour growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are not publicly available, but are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Ogasawara C, Philbrick BD, Adamson DC. Meningioma: a review of epidemiology, pathology, diagnosis, treatment, and future directions. Biomedicines. 2021:9. https://doi.org/10.3390/biomedicines9030319.

  2. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro-Oncology. 2019;21:v1–v100. https://doi.org/10.1093/neuonc/noz150.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Goldbrunner R, Stavrinou P, Jenkinson MD, Sahm F, Mawrin C, Weber DC, et al. EANO guideline on the diagnosis and management of meningiomas. Neuro-Oncology. 2021;23:1821–34. https://doi.org/10.1093/neuonc/noab150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gousias K, Schramm J, Simon M. The Simpson grading revisited: aggressive surgery and its place in modern meningioma management. J Neurosurg. 2016;125:551–60. https://doi.org/10.3171/2015.9.JNS15754.

    Article  PubMed  Google Scholar 

  5. McGovern SL, Aldape KD, Munsell MF, Mahajan A, DeMonte F, Woo SY. A comparison of World Health Organization tumor grades at recurrence in patients with non-skull base and skull base meningiomas. J Neurosurg. 2010;112:925–33. https://doi.org/10.3171/2009.9.JNS09617.

    Article  PubMed  Google Scholar 

  6. Ehresman JS, Garzon-Muvdi T, Rogers D, Lim M, Gallia GL, Weingart J, et al. The relevance of Simpson grade resections in modern neurosurgical treatment of World Health Organization grade I, II, and III meningiomas. World Neurosurg. 2018;109:e588–e93. https://doi.org/10.1016/j.wneu.2017.10.028.

    Article  PubMed  Google Scholar 

  7. Rogers L, Barani I, Chamberlain M, Kaley TJ, McDermott M, Raizer J, et al. Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review J Neurosurg. 2015;122:4–23. https://doi.org/10.3171/2014.7.JNS131644.

    Article  PubMed  Google Scholar 

  8. Kaley T, Barani I, Chamberlain M, McDermott M, Panageas K, Raizer J, et al. Historical benchmarks for medical therapy trials in surgery- and radiation-refractory meningioma: a RANO review. Neuro-Oncology. 2014;16:829–40. https://doi.org/10.1093/neuonc/not330.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pavel M, Oberg K, Falconi M, Krenning EP, Sundin A, Perren A, et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31:844–60. https://doi.org/10.1016/j.annonc.2020.03.304.

    Article  CAS  PubMed  Google Scholar 

  10. Silva CB, Ongaratti BR, Trott G, Haag T, Ferreira NP, Leaes CG, et al. Expression of somatostatin receptors (SSTR1-SSTR5) in meningiomas and its clinicopathological significance. Int J Clin Exp Pathol. 2015;8:13185–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Barresi V, Alafaci C, Salpietro F, Tuccari G. Sstr2A immunohistochemical expression in human meningiomas: is there a correlation with the histological grade, proliferation or microvessel density? Oncol Rep. 2008;20:485–92.

    CAS  PubMed  Google Scholar 

  12. Arena S, Barbieri F, Thellung S, Pirani P, Corsaro A, Villa V, et al. Expression of somatostatin receptor mRNA in human meningiomas and their implication in in vitro antiproliferative activity. J Neuro-Oncol. 2004;66:155–66. https://doi.org/10.1023/b:neon.0000013498.19981.55.

    Article  Google Scholar 

  13. Afshar-Oromieh A, Giesel FL, Linhart HG, Haberkorn U, Haufe S, Combs SE, et al. Detection of cranial meningiomas: comparison of (6)(8)Ga-DOTATOC PET/CT and contrast-enhanced MRI. Eur J Nucl Med Mol Imaging. 2012;39:1409–15. https://doi.org/10.1007/s00259-012-2155-3.

    Article  PubMed  Google Scholar 

  14. Bashir A, Vestergaard MB, Binderup T, Broholm H, Marner L, Ziebell M, et al. Pharmacokinetic analysis of [(68)Ga]Ga-DOTA-TOC PET in meningiomas for assessment of in vivo somatostatin receptor subtype 2. Eur J Nucl Med Mol Imaging. 2020;47:2577–88. https://doi.org/10.1007/s00259-020-04759-1.

    Article  CAS  PubMed  Google Scholar 

  15. Rachinger W, Stoecklein VM, Terpolilli NA, Haug AR, Ertl L, Poschl J, et al. Increased 68Ga-DOTATATE uptake in PET imaging discriminates meningioma and tumor-free tissue. J Nucl Med. 2015;56:347–53. https://doi.org/10.2967/jnumed.114.149120.

    Article  CAS  PubMed  Google Scholar 

  16. Mirian C, Duun-Henriksen AK, Maier A, Pedersen MM, Jensen LR, Bashir A, et al. Somatostatin receptor-targeted radiopeptide therapy in treatment-refractory meningioma: individual patient data meta-analysis. J Nucl Med. 2021;62:507–13. https://doi.org/10.2967/jnumed.120.249607.

    Article  CAS  PubMed  Google Scholar 

  17. Marincek N, Radojewski P, Dumont RA, Brunner P, Muller-Brand J, Maecke HR, et al. Somatostatin receptor-targeted radiopeptide therapy with 90Y-DOTATOC and 177Lu-DOTATOC in progressive meningioma: long-term results of a phase II clinical trial. J Nucl Med. 2015;56:171–6. https://doi.org/10.2967/jnumed.114.147256.

    Article  CAS  PubMed  Google Scholar 

  18. Bartolomei M, Bodei L, De Cicco C, Grana CM, Cremonesi M, Botteri E, et al. Peptide receptor radionuclide therapy with (90)Y-DOTATOC in recurrent meningioma. Eur J Nucl Med Mol Imaging. 2009;36:1407–16. https://doi.org/10.1007/s00259-009-1115-z.

    Article  CAS  PubMed  Google Scholar 

  19. Seystahl K, Stoecklein V, Schuller U, Rushing E, Nicolas G, Schafer N, et al. Somatostatin receptor-targeted radionuclide therapy for progressive meningioma: benefit linked to 68Ga-DOTATATE/-TOC uptake. Neuro-Oncology. 2016;18:1538–47. https://doi.org/10.1093/neuonc/now060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gerster-Gillieron K, Forrer F, Maecke H, Mueller-Brand J, Merlo A, Cordier D. 90Y-DOTATOC as a therapeutic option for complex recurrent or progressive meningiomas. J Nucl Med. 2015;56:1748–51. https://doi.org/10.2967/jnumed.115.155853.

    Article  CAS  PubMed  Google Scholar 

  21. Minutoli F, Amato E, Sindoni A, Cardile D, Conti A, Herberg A, et al. Peptide receptor radionuclide therapy in patients with inoperable meningiomas: our experience and review of the literature. Cancer Biother Radiopharm. 2014;29:193–9. https://doi.org/10.1089/cbr.2013.1599.

    Article  CAS  PubMed  Google Scholar 

  22. Hartrampf PE, Hanscheid H, Kertels O, Schirbel A, Kreissl MC, Flentje M, et al. Long-term results of multimodal peptide receptor radionuclide therapy and fractionated external beam radiotherapy for treatment of advanced symptomatic meningioma. Clin Transl Radiat Oncol. 2020;22:29–32. https://doi.org/10.1016/j.ctro.2020.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kreissl MC, Hanscheid H, Lohr M, Verburg FA, Schiller M, Lassmann M, et al. Combination of peptide receptor radionuclide therapy with fractionated external beam radiotherapy for treatment of advanced symptomatic meningioma. Radiat Oncol. 2012;7:99. https://doi.org/10.1186/1748-717X-7-99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muther M, Roll W, Brokinkel B, Zinnhardt B, Sporns PB, Seifert R, et al. Response assessment of somatostatin receptor targeted radioligand therapies for progressive intracranial meningioma. Nuklearmedizin. 2020;59:348–55. https://doi.org/10.1055/a-1200-0989.

    Article  PubMed  Google Scholar 

  25. Brabander T, van der Zwan WA, Teunissen JJM, Kam BLR, Feelders RA, de Herder WW, et al. Long-term efficacy, survival, and safety of [(177)Lu-DOTA(0),Tyr(3)]octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors. Clin Cancer Res. 2017;23:4617–24. https://doi.org/10.1158/1078-0432.CCR-16-2743.

    Article  CAS  PubMed  Google Scholar 

  26. Huang RY, Bi WL, Weller M, Kaley T, Blakeley J, Dunn I, et al. Proposed response assessment and endpoints for meningioma clinical trials: report from the response assessment in neuro-oncology working group. Neuro-Oncology. 2019;21:26–36. https://doi.org/10.1093/neuonc/noy137.

    Article  CAS  PubMed  Google Scholar 

  27. US Department of Health and Human Services, National Institute of health, National Cancer Institute. Common terminology criteria for adverse events (CTCAE). Version 4.03. 2010; Accessed September 2021. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm.

  28. Bolch WE, Eckerman KF, Sgouros G. Thomas Sr. MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry--standardization of nomenclature. J Nucl Med. 2009;50:477–84. https://doi.org/10.2967/jnumed.108.056036.

    Article  CAS  PubMed  Google Scholar 

  29. Peters SMB, Meyer Viol SL, van der Werf NR, de Jong N, van Velden FHP, Meeuwis A, et al. Variability in lutetium-177 SPECT quantification between different state-of-the-art SPECT/CT systems. EJNMMI Phys. 2020;7:9. https://doi.org/10.1186/s40658-020-0278-3.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Andersson M, Johansson L, Eckerman K, Mattsson S. IDAC-dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms. EJNMMI Res. 2017;7:88. https://doi.org/10.1186/s13550-017-0339-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20. https://doi.org/10.1007/s00401-016-1545-1.

    Article  PubMed  Google Scholar 

  32. Preusser M, Silvani A, Le Rhun E, Soffietti R, Lombardi G, Sepulveda JM, et al. Trabectedin for recurrent WHO grade 2 or 3 meningioma: a randomized phase 2 study of the EORTC brain tumor group (EORTC-1320-BTG). Neuro-Oncology. 2021. https://doi.org/10.1093/neuonc/noab243.

  33. Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of (177)lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376:125–35. https://doi.org/10.1056/NEJMoa1607427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sierra ML, Agazzi A, Bodei L, Pacifici M, Arico D, De Cicco C, et al. Lymphocytic toxicity in patients after peptide-receptor radionuclide therapy (PRRT) with 177Lu-DOTATATE and 90Y-DOTATOC. Cancer Biother Radiopharm. 2009;24:659–65. https://doi.org/10.1089/cbr.2009.0641.

    Article  CAS  PubMed  Google Scholar 

  35. Feijtel D, de Jong M, Nonnekens J. Peptide receptor radionuclide therapy: looking back, looking forward. Curr Top Med Chem. 2020;20:2959–69. https://doi.org/10.2174/1568026620666200226104652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gogineni VR, Nalla AK, Gupta R, Dinh DH, Klopfenstein JD, Rao JS. Chk2-mediated G2/M cell cycle arrest maintains radiation resistance in malignant meningioma cells. Cancer Lett. 2011;313:64–75. https://doi.org/10.1016/j.canlet.2011.08.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Biau J, Khalil T, Verrelle P, Lemaire JJ. Fractionated radiotherapy and radiosurgery of intracranial meningiomas. Neurochirurgie. 2018;64:29–36. https://doi.org/10.1016/j.neuchi.2014.10.112.

    Article  CAS  PubMed  Google Scholar 

  38. National Comprehensive Cancer Network. Clinical practice guidelines in oncology. Central nervous system cancers. Version 2.2021. Accessed April 2022. https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf.

  39. Graillon T, Ferrer L, Siffre J, Sanson M, Peyre M, Peyriere H, et al. Role of 3D volume growth rate for drug activity evaluation in meningioma clinical trials: the example of the CEVOREM study. Neuro-Oncology. 2021;23:1139–47. https://doi.org/10.1093/neuonc/noab019.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sommerauer M, Burkhardt JK, Frontzek K, Rushing E, Buck A, Krayenbuehl N, et al. 68Gallium-DOTATATE PET in meningioma: a reliable predictor of tumor growth rate? Neuro-Oncology. 2016;18:1021–7. https://doi.org/10.1093/neuonc/now001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hashiba T, Hashimoto N, Izumoto S, Suzuki T, Kagawa N, Maruno M, et al. Serial volumetric assessment of the natural history and growth pattern of incidentally discovered meningiomas. J Neurosurg. 2009;110:675–84. https://doi.org/10.3171/2008.8.JNS08481.

    Article  PubMed  Google Scholar 

  42. Oya S, Kim SH, Sade B, Lee JH. The natural history of intracranial meningiomas. J Neurosurg. 2011;114:1250–6. https://doi.org/10.3171/2010.12.JNS101623.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: NSM, EMB, JECB, JH, and TB

Acquisition, analysis, and/or interpretation of data: all authors

Drafting of the manuscript: NSM

Critical revision of the manuscript for important intellectual content: all authors

Statistical analysis: NSM, JH, and TB.

Corresponding author

Correspondence to Noémie S. Minczeles.

Ethics declarations

Ethics approval

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Ethics Committee of Erasmus Medical Centre.

Consent to participate

Informed consent was obtained from all subjects involved in the study, or the need for written informed consent was waived by the medical ethical committee of the Erasmus MC.

Consent for publication

Informed consent was obtained from all subjects involved in the study, or the need for written informed consent was waived by the medical ethical committee of the Erasmus MC.

Conflict of interest

E.M.B has received consultancy fees from BrainLab A.G. W.W.D.H has received speaker fees from AAA-Novartis and Ipsen, compensation from AAA-Novartis and Ipsen for service on advisory boards, and research support from AAA-Novartis. J.H. has received speaker fees from Ipsen and compensation from AAA-Novartis and Ipsen for service on advisory boards. T.B. has received speaker fees from AAA-Novartis and Ipsen, compensation from AAA-Novartis for service on advisory board, and research support from AAA-Novartis. The other authors have no disclosures.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology - Brain

Eelke M. Bos and Reinoud C. de Leeuw shared second authorship.

Supplementary information

ESM 1

(PNG 2912 kb)

High Resolution Image

(TIF 39884 kb)

ESM 2

(DOCX 21 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minczeles, N.S., Bos, E.M., de Leeuw, R.C. et al. Efficacy and safety of peptide receptor radionuclide therapy with [177Lu]Lu-DOTA-TATE in 15 patients with progressive treatment-refractory meningioma. Eur J Nucl Med Mol Imaging 50, 1195–1204 (2023). https://doi.org/10.1007/s00259-022-06044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-022-06044-9

Keywords

Navigation